Population genetics, phylogeography, and systematics of the thornyhead rockfishes (Sebastolobus) along the deep continental slopes of the North Pacific Ocean

2000 ◽  
Vol 57 (8) ◽  
pp. 1701-1717 ◽  
Author(s):  
Carol A Stepien ◽  
Alison K Dillon ◽  
Amy K Patterson

Population genetic, phylogeographic, and systematic relationships are elucidated among the three species comprising the thornyhead rockfish genus Sebastolobus (Teleostei: Scorpaenidae). Genetic variation among sampling sites representing their extensive ranges along the deep continental slopes of the northern Pacific Ocean is compared using sequence data from the left domain of the mtDNA control region. Comparisons are made among the shortspine thornyhead (S. alascanus) (from seven locations), the longspine thornyhead (S. altivelis) (from five sites), which are sympatric in the northeast, and the broadbanded thornyhead (S. macrochir) (a single site) from the northwest. Phylogenetic trees rooted to Sebastes show that S. macrochir is the sister taxon of S. alascanus and S. altivelis. Intraspecific genetic variability is appreciable, with most individuals having unique haplotypes. Gene flow is substantial among some locations and others diverged significantly. Genetic divergences among sampling sites for S. alascanus indicate an isolation by geographic distance pattern. Genetic divergences for S. altivelis are unrelated to the hypothesis of isolation by geographic distance and appear to be more consistent with the hypothesis of larval retention in currents and gyres. Differences in geographic genetic patterns between the species are attributed to life history differences in their relative mobilities as juveniles and adults.

1992 ◽  
Vol 49 (11) ◽  
pp. 2386-2391 ◽  
Author(s):  
Andrew P. Martin ◽  
Robert Humphreys ◽  
Stephen R. Palumbi

Armorhead (Pseudopentaceros wheeleri) occur in the subarctic, epipelagic habitats of the northern Pacific Ocean and are known to reproduce on seamounts in the central Pacific. Over the last few decades, overexploitation of seamount populations led to dramatic declines in abundances of reproductive populations. We undertook a study of the population genetics of armorhead to test whether distinct stocks exist in association with specific seamounts. We used the polymerase chain reaction (PCR) and a combination of DNA sequencing and restriction fragment length polymorphism (RFLP) analysis to analyze mtDNA variants for individuals collected from three localities: two seamounts and from the open ocean. We discovered that mtDNA haplotypes are not partitioned geographically, refuting the hypothesis that different seamounts harbor genetically distinct populations. Furthermore, genetic similarity of seamount and open-ocean fish supports the hypothesis that armorhead migrate between the central and northern Pacific Ocean for reproduction and feeding, respectively.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 388
Author(s):  
Hao Cheng ◽  
Liang Sun ◽  
Jiagen Li

The extraction of physical information about the subsurface ocean from surface information obtained from satellite measurements is both important and challenging. We introduce a back-propagation neural network (BPNN) method to determine the subsurface temperature of the North Pacific Ocean by selecting the optimum input combination of sea surface parameters obtained from satellite measurements. In addition to sea surface height (SSH), sea surface temperature (SST), sea surface salinity (SSS) and sea surface wind (SSW), we also included the sea surface velocity (SSV) as a new component in our study. This allowed us to partially resolve the non-linear subsurface dynamics associated with advection, which improved the estimated results, especially in regions with strong currents. The accuracy of the estimated results was verified with reprocessed observational datasets. Our results show that the BPNN model can accurately estimate the subsurface (upper 1000 m) temperature of the North Pacific Ocean. The corresponding mean square errors were 0.868 and 0.802 using four (SSH, SST, SSS and SSW) and five (SSH, SST, SSS, SSW and SSV) input parameters and the average coefficients of determination were 0.952 and 0.967, respectively. The input of the SSV in addition to the SSH, SST, SSS and SSW therefore has a positive impact on the BPNN model and helps to improve the accuracy of the estimation. This study provides important technical support for retrieving thermal information about the ocean interior from surface satellite remote sensing observations, which will help to expand the scope of satellite measurements of the ocean.


2021 ◽  
Author(s):  
R. J. David Wells ◽  
Veronica A. Quesnell ◽  
Robert L. Humphreys ◽  
Heidi Dewar ◽  
Jay R. Rooker ◽  
...  

2010 ◽  
Vol 37 (2) ◽  
pp. n/a-n/a ◽  
Author(s):  
Robert H. Byrne ◽  
Sabine Mecking ◽  
Richard A. Feely ◽  
Xuewu Liu

Sign in / Sign up

Export Citation Format

Share Document