Life history consequences of overexploitation to population recovery in Northwest Atlantic cod (Gadus morhua)

2005 ◽  
Vol 62 (4) ◽  
pp. 824-832 ◽  
Author(s):  
Jeffrey A Hutchings

Changes to life history traits are often concomitant with prolonged periods of exploitation. In the Northwest Atlantic, 30- to 40-year declines of more than 90% of Atlantic cod (Gadus morhua) have been associated with significant reductions in age and length at maturity, changes most parsimoniously explained as genetic responses to fishing. Increased survival costs of reproduction associated with earlier maturity, resulting in higher natural mortality and shorter life span, negatively affect population growth rate and rate of recovery. Coupled with lower hatching rate among first-time spawners and smaller size at maturity, a modest reduction in age from 6 to 4 years can reduce annual population growth in Atlantic cod by 25%–30%, based on the output of a stochastic, age-structured life history model. Earlier maturity more than doubles the probability of negative population growth every generation. These results underscore the potential for fishing-induced changes to life history traits alone to generate slow or negligible recovery in marine fishes, exacerbating negative impacts on population growth resulting from ecosystem-level alterations to interspecific competition and predation.

2013 ◽  
Vol 29 (3) ◽  
pp. 623-629 ◽  
Author(s):  
M.-M. Kroll ◽  
M. A. Peck ◽  
I. A. E. Butts ◽  
E. A. Trippel

1999 ◽  
Vol 56 (9) ◽  
pp. 1612-1623 ◽  
Author(s):  
Jeffrey A Hutchings

A stochastic, age-structured life history model was used to examine how age at maturity (theta), pre- (Zimm) and postreproductive (Zmat) mortality, and postreproductive growth rate can affect maximum reproductive rates of fish at low population size. Simulations suggest that annual (r) and per-generation (R0) metrics of population growth for Newfoundland's northern Grand Bank Atlantic cod, Gadus morhua, are primarily influenced by changes to mortality prior to and following reproduction. At observed weights at age and Zmat = 0.2, r ranged between 0.135 and 0.164 for cod maturing at between 4 and 7 years. Incremental increases in either Zimm or Zmat of 0.1 were associated with 0.03-0.05 reductions in r. To effect similar reductions, individual growth rate would have to decline by approximately one half. At observed weights at age, increases in Zmat from 0.20 to 0.45 increased the probability of negative per-generation growth from 3 to 26% for cod maturing at 4 years and from 6 to 46% for cod maturing at 7 years. Thus, even in the absence of fishing mortality, little or no population growth by Atlantic cod may not be unexpected in the presence of environmental stochasticity, particularly when accompanied by increases in mortality and declining individual growth.


2016 ◽  
Vol 94 (4) ◽  
pp. 257-264 ◽  
Author(s):  
Rebekah A. Oomen ◽  
Jeffrey A. Hutchings

We employed common-garden experiments to test for genetic variation in responses of larval life-history traits to temperature between two populations of Atlantic cod (Gadus morhua L., 1758) that naturally experience contrasting thermal environments during early life due to spatial and temporal differences in spawning. Southern Gulf of St. Lawrence cod larvae experienced faster growth in warmer water and low, uniform survival across all experimental temperatures (3, 7, 11 °C), consistent with previous studies on this spring-spawning population. In contrast, larvae from fall-spawning Southwestern Scotian Shelf cod collected near Sambro, Nova Scotia, lacked plasticity for growth but experienced much lower survival at higher temperatures. Phenotypes that are positively associated with fitness were observed at temperatures closest to those experienced in the wild, consistent with the hypothesis that these populations are adapted to local thermal regimes. The lack of growth plasticity observed in Sambro cod might be due to costly maintenance of plasticity in stable environments or energy savings at cold temperatures. However, additional experiments need to be conducted on Sambro cod and other fall-spawning marine fishes to determine to what extent responses to projected changes in climate will differ among populations.


2011 ◽  
Vol 68 (4) ◽  
pp. 618-631 ◽  
Author(s):  
Yvan Lambert

Time series of life history traits determining the reproductive potential and productivity of Atlantic cod ( Gadus morhua ) in the northern Gulf of St. Lawrence (nGSL) were obtained for the period covering the collapse and failure of the stock to recover. Decreasing trends in these traits were observed under unfavourable oceanographic conditions, with lowest values reached in the early 1990s. These changes had a negative impact on reproductive rate and instantaneous rate (r) of population growth. Estimates of r used as a proxy of stock productivity were negative when the stock collapsed, indicating that the biomass would have decreased even without fishing. Population abundance projections for the recent period suggest a potential increase in population size of 7.3% per year, with a doubling time of 10.5 years in the absence of exploitation and a near 0% rate with current fishing mortality, indicating that present harvesting does not allow any rebuilding of the stock. Given the similarities in environmental conditions and key life history traits, the situation in the nGSL might reflect the state of many northwest Atlantic cod stocks.


2014 ◽  
Vol 514 ◽  
pp. 217-229 ◽  
Author(s):  
HY Wang ◽  
LW Botsford ◽  
JW White ◽  
MJ Fogarty ◽  
F Juanes ◽  
...  

2016 ◽  
Author(s):  
Eric G Johnson ◽  
Mary Katherine Swenarton

The effective management of invasive species requires a detailed understanding of the invader’s life history. This information is essential for modeling population growth and predicting rates of expansion, quantifying ecological impacts and assessing the efficacy of removal and control strategies. Indo-Pacific lionfish ( Pterois volitans/miles ) have rapidly invaded the western Atlantic, Gulf of Mexico and Caribbean Sea with documented negative impacts on native ecosystems. To better understand the life history of this species, we developed and validated a length-based, age-structured model to investigate age, growth and population structure in northeast Florida. The main findings of this study were: (1) lionfish exhibited rapid growth with seasonal variation in growth rates, (2) distinct cohorts were clearly identifiable in the length-frequency data suggesting that lionfish arerecruiting during a relatively short period in summer, and (3) the majority of lionfish were less than two years old with no lionfish older than 3 years of age, possibly as a result of an ontogenetic shift to deeper water, which may provide a reservoir of spawning biomass not accessible to recreational or commercial spearfishing.


2013 ◽  
Vol 222 (6) ◽  
pp. 615-624 ◽  
Author(s):  
Per G. Fjelldal ◽  
Geir K. Totland ◽  
Tom Hansen ◽  
Harald Kryvi ◽  
Xiyuan Wang ◽  
...  

2014 ◽  
Vol 71 (8) ◽  
pp. 1198-1208 ◽  
Author(s):  
Douglas C. Braun ◽  
John D. Reynolds

Understanding linkages among life history traits, the environment, and population dynamics is a central goal in ecology. We compared 15 populations of sockeye salmon (Oncorhynchus nerka) to test general hypotheses for the relative importance of life history traits and environmental conditions in explaining variation in population dynamics. We used life history traits and habitat variables as covariates in mixed-effect Ricker models to evaluate the support for correlates of maximum population growth rates, density dependence, and variability in dynamics among populations. We found dramatic differences in the dynamics of populations that spawn in a small geographical area. These differences among populations were related to variation in habitats but not life history traits. Populations that spawned in deep water had higher and less variable population growth rates, and populations inhabiting streams with larger gravels experienced stronger negative density dependence. These results demonstrate, in these populations, the relative importance of environmental conditions and life histories in explaining population dynamics, which is rarely possible for multiple populations of the same species. Furthermore, they suggest that local habitat variables are important for the assessment of population status, especially when multiple populations with different dynamics are managed as aggregates.


2014 ◽  
Vol 71 (1) ◽  
pp. 151-161 ◽  
Author(s):  
Paul D. Spencer ◽  
Sarah B.M. Kraak ◽  
Edward A. Trippel

Increased larval viability with increased spawner age (i.e., maternal effects) have been observed in Atlantic cod (Gadus morhua) and Pacific rockfish (Sebastes spp.) stocks. Analytical results from a Beverton–Holt recruitment model indicate density-independent maternal effects affected the relative stock productivity and fishing rate reference points. We simulated populations based on Pacific cod (Gadus macrocephalus) and Pacific ocean perch (Sebastes alutus) to explore how estimates of reference points Fmsy and Fcrash are affected by maternal effects and potential interactions with life-history pattern, recruitment autocorrelation, and exploitation rate. Estimates of Fmsy and Fcrash were made from populations with maternal effects using either total larvae (proportional to eggs) or viable larvae (incorporating the maternal effect). Maternal effects have the largest impact upon estimated population productivity at high fishing rates. Estimates of Fmsy and Fcrash for cod were also affected by autocorrelated recruitment variability because of their reduced longevity compared with Pacific ocean perch. These results suggest the importance of evaluating the influence of maternal effects on estimated stock productivity on a case-by-case basis, particularly for depleted stocks composed of relatively young spawners.


Sign in / Sign up

Export Citation Format

Share Document