Base cation reservoirs in soil control the buffering capacity of lakes in forested catchments

2006 ◽  
Vol 63 (3) ◽  
pp. 471-474 ◽  
Author(s):  
Daniel Houle ◽  
Rock Ouimet ◽  
Suzanne Couture ◽  
Christian Gagnon

The acidification of forest soils and surface waters and their relatively poor recovery record following reductions in atmospheric sulphur emissions is a major ongoing environmental problem, particularly in northeastern North America. The slow recovery of surface water is widely hypothesized to result from depletion of reservoirs of base cations in soil. This is concordant with the theory that the acid-neutralizing capacity (ANC) of lakes is likely proportional to the size of the exchangeable base cation reservoirs present in surrounding watershed soils. However, data describing these linkages are still nonexistent in the literature. Here we show that lake ANC is highly predictable (r2 = 0.75) based on the size of the exchangeable Ca2+ reservoir in soil in 21 catchments representative of soil and lake conditions encountered in northeastern North America. This finding indirectly supports the hypothesis that the poor recovery of surface water from acidification is governed by the size of base cation reservoirs present in catchment soils. The size of the base cation reservoir in soil is thus a strong indicator of the acid–base status of both soils and surface waters.

2008 ◽  
Vol 65 (5) ◽  
pp. 809-820 ◽  
Author(s):  
L A Molot ◽  
Peter J Dillon

Decreases in exchangeable base cation reservoirs, base cation export, and lake concentrations have been reported for acid-sensitive regions in Europe and eastern North America. These decreases have produced smaller than anticipated increases in alkalinity in surface waters in response to reductions in sulphate emissions and may have ecological consequences. This study presents annual export rates of Ca, Mg, K, and Na from 20 forested catchments between 1978 and 1998 and concentrations in seven downstream lakes between 1975 and 2005 in an acid-sensitive region of central Ontario, Canada. In contrast to monovalent cation export, decreases in divalent cation export continued after an extended dry period ended. Lake concentration trends showed three distinct periods. The first period (1975–1976 to 1982–1983) coincided with high runoff and was characterized by relatively high Ca, Mg, and K concentrations. This was followed by a 10-year period of fluctuations around the long-term mean. Concentrations then dropped below the long-term means and remained 5%–20% below the means until 2004–2005. The latter trend in lake concentrations suggests that export likely remained low but stable after May 1998 (the last month for which export data are available). Na increased between 250% and 350% in Dickie and Harp lakes as a result of road salt contamination.


1988 ◽  
Vol 19 (2) ◽  
pp. 99-120 ◽  
Author(s):  
A. Lepistö ◽  
P. G. Whitehead ◽  
C. Neal ◽  
B. J. Cosby

A modelling study has been undertaken to investigate long-term changes in surface water quality in two contrasting forested catchments; Yli-Knuutila, with high concentrations of base cations and sulphate, in southern Finland; and organically rich, acid Liuhapuro in eastern Finland. The MAGIC model is based on the assumption that certain chemical processes (anion retention, cation exchange, primary mineral weathering, aluminium dissolution and CO2 solubility) in catchment soils are likely keys to the responses of surface water quality to acidic deposition. The model was applied for the first time to an organically rich catchment with high quantities of humic substances. The historical reconstruction of water quality at Yli-Knuutila indicates that the catchment surface waters have lost about 90 μeq l−1 of alkalinity in 140 years, which is about 60% of their preacidification alkalinity. The model reproduces the declining pH levels of recent decades as indicated by paleoecological analysis. Stream acidity trends are investigated assuming two scenarios for future deposition. Assuming deposition rates are maintained in the future at 1984 levels, the model indicates that stream pH is likely to continue to decline below presently measured levels. A 50% reduction in deposition rates would likely result in an increase in pH and alkalinity of the stream, although not to estimated preacidification levels. Because of the high load of organic acids to the Liuhapuro stream it has been acid before atmospheric pollution; a decline of 0.2 pH-units was estimated with increasing leaching of base cations from the soil despite the partial pH buffering of the system by organic compounds.


2006 ◽  
Vol 52 (Special Issue) ◽  
pp. S3-S13 ◽  
Author(s):  
M.E. Fenn ◽  
T.G. Huntington ◽  
S.B. McLaughlin ◽  
C. Eagar ◽  
A. Gomez ◽  
...  

Forest soil acidification and depletion of nutrient cations have been reported for several forested regions in North America, predominantly in the eastern United States, including the northeast and in the central Appalachians, but also in parts of southeastern Canada and the southern U.S. Continuing regional inputs of nitrogen and sulfur are of concern because of leaching of base cations, increased availability of soil Al, and the accumulation and ultimate transmission of acidity from forest soils to streams. Losses of calcium from forest soils and forested watersheds have now been documented as a sensitive early indicator and a functionally significant response to acid deposition for a wide range of forest soils in North America. For red spruce, a clear link has been established between acidic deposition, alterations in calcium and aluminum supplies and increased sensitivity to winter injury. Cation depletion appears to contribute to sugar maple decline on some soils, specifically the high mortality rates observed in northern Pennsylvania over the last decade. While responses to liming have not been systematically examined in North America, in a study in Pennsylvania, restoring basic cations through liming increased basal area growth of sugar maple and levels of calcium and magnesium in soil and foliage. In the San Bernardino Mountains in southern California near the west coast, the pH of the A horizon has declined by at least 2 pH units (to pH 4.0–4.3) over the past 30 years, with no detrimental effects on bole growth; presumably, because of the Mediterranean climate, base cation pools are still high and not limiting for plant growth.


1994 ◽  
Vol 20 (3) ◽  
pp. 369-372 ◽  
Author(s):  
Tuija Roila ◽  
Pirkko Kortelainen ◽  
Mark B. David ◽  
Irma Mäkinen

1995 ◽  
Vol 26 (4-5) ◽  
pp. 369-388 ◽  
Author(s):  
Espen Lydersen ◽  
Arne Henriksen

Input of neutral salt, primarily NaCl, from sea spray is an important factor for short-term acidification of surface water, primarily in already acidified areas, because Na may substitute for H+ and cationic aluminium by cation-exchange reactions in the soil. By evaluating the variation of non-marine sodium (Na*) separately it is possible to estimate the major effect of seasalt episodes on the neutralizing capacity (ANC) of stream water. At four long-term monitored Norwegian catchments, the Na* in stream water on average explained 28 ± 4% of the monthly variations of ANC in stream water at Birkenes, and 27 ± 3%, 20 ± 2% and 56 ± 5% of the correspondent variations at Storgama, Langtjern and Kaarvatn, during the respective monitoring periods. The remaining variations in acid neutralizing capacity are explained by the difference between non-marine base cations (ΣCa*,Mg*,K*) and non-marine sulphate (SO4*) and NO3. This paper also indicates that seasalt episodes are probably of greater importance for the periodic variations in ANC of stream water than commonly recognized. During the last years, extreme seasalt episodes have occurred in southern Norway, and more frequently at winter-time, which means that seasalt inputs have played a more important role for the short-term variations of ANC in stream water the last years. This tendency is also strengthened by the fact that there has been a significant decline in the input of acidic sulphur compounds and non-marine base cations in stream water during the last 10-15 years. Because the decline in soil-derived base cations in stream water is somewhat lower than the correspondent decline of sulphate, a slowly improving ANC of stream water should be expected on long-term basis. Seasalt episodes of the same magnitude as those present during the last years, will therefore most likely cause less extreme water-chemical conditions in the years to come. Because the seasalt effect seems to be a short-term effect, there is no reason to claim that these effects may cause long-term acidification, a conclusion earlier drawn from several correspondent studies.


2000 ◽  
Vol 30 (8) ◽  
pp. 1206-1213 ◽  
Author(s):  
C W Martin ◽  
C T Driscoll ◽  
T J Fahey

Long-term patterns of streamwater chemistry provide valuable evidence of the effects of environmental change on ecosystem biogeochemistry. Observations from old-growth forests may be particularly valuable, because patterns should not be influenced by forest succession. Water samples were collected biweekly from four streams in, and near, the old-growth forest watershed of the Bowl Research Natural Area in the White Mountains of New Hampshire from May 1973 through October 1974, and from June 1994 through June 1997. Average NO3– concentrations, which ranged from 40.8 to 46.1 µequiv.·L-1 in 1973-1974, declined significantly to averages of 14.9-20.1 µequiv.·L-1 during 1994-1997. Concentrations of the base cations, Ca2+ and Mg2+, also declined in stream water between the two sampling periods. The northeastern United States, including the study area, has been subjected to elevated atmospheric deposition of sulfur and nitrogen for more than 40 years. This observation has led to the concern that mature forest ecosystems may exhibit N saturation and depletion of Ca2+ from exchangeable soil pools. While the Bowl exhibits a pattern of elevated concentrations of NO3– throughout the year, suggestive of conditions of N saturation, concentrations have declined markedly over the last 20 years. Concentrations of Ca2+ have also declined suggesting possible depletion from the exchangeable soil pool, but the acid neutralizing capacity of stream water has remained constant or increased, indicating resistance to additional acidification.


2018 ◽  
Vol 115 (4) ◽  
pp. E574-E583 ◽  
Author(s):  
Sujay S. Kaushal ◽  
Gene E. Likens ◽  
Michael L. Pace ◽  
Ryan M. Utz ◽  
Shahan Haq ◽  
...  

Salt pollution and human-accelerated weathering are shifting the chemical composition of major ions in fresh water and increasing salinization and alkalinization across North America. We propose a concept, the freshwater salinization syndrome, which links salinization and alkalinization processes. This syndrome manifests as concurrent trends in specific conductance, pH, alkalinity, and base cations. Although individual trends can vary in strength, changes in salinization and alkalinization have affected 37% and 90%, respectively, of the drainage area of the contiguous United States over the past century. Across 232 United States Geological Survey (USGS) monitoring sites, 66% of stream and river sites showed a statistical increase in pH, which often began decades before acid rain regulations. The syndrome is most prominent in the densely populated eastern and midwestern United States, where salinity and alkalinity have increased most rapidly. The syndrome is caused by salt pollution (e.g., road deicers, irrigation runoff, sewage, potash), accelerated weathering and soil cation exchange, mining and resource extraction, and the presence of easily weathered minerals used in agriculture (lime) and urbanization (concrete). Increasing salts with strong bases and carbonates elevate acid neutralizing capacity and pH, and increasing sodium from salt pollution eventually displaces base cations on soil exchange sites, which further increases pH and alkalinization. Symptoms of the syndrome can include: infrastructure corrosion, contaminant mobilization, and variations in coastal ocean acidification caused by increasingly alkaline river inputs. Unless regulated and managed, the freshwater salinization syndrome can have significant impacts on ecosystem services such as safe drinking water, contaminant retention, and biodiversity.


Sign in / Sign up

Export Citation Format

Share Document