Low-Temperature Fish Storage Facility with Precise Temperature Control

1969 ◽  
Vol 26 (1) ◽  
pp. 154-161
Author(s):  
K. R. Scott

A coldroom complex recently installed at the Fisheries Research Board of Canada, Freshwater Institute laboratory at Winnipeg features several design aspects that are considered novel. These include foamed-in-place urethane insulation, two alternating R-502 refrigeration systems incorporating automatic safety switch-over and adjustable defrost, "straight-line" pneumatic temperature control, hot gas bypass control, and a master panel. The facility combines a cold laboratory at +2 C, a long-term storage room at −37 C, a small anteroom at −26 C, and a room containing eight 10.0-ft3 precise temperature cabinets at −40 C. Room temperature variation is ±0.25 degrees C during steady state conditions. Temperature rise during daily defrosting is less than 2 degrees C for a duration of 1 hr.

Author(s):  
A. Sinebryukhova ◽  
A. Shipelova ◽  
E. Darnotuk ◽  
A. Chekanov ◽  
O. Baranova ◽  
...  

The optimal conditions were selected for obtaining homogeneous nanoemulsions (NE) of lipoic acid conjugates (LA-conjugates) based on Pluronic F68 (1,8%) with a particle size not exceeding 400 nm, characterized by 97±2% encapsulation efficiency of substances in nanoparticles (NP). A heterogeneous NE (polydispersity index, PDI>0,3) with the derivative of LA and myo-inositol based on phosphatidylcholine (PC, C = 3 mg/ml) was also obtained consisting of 2 particle fractions: 20–70 nm (27%) and 122–212 nm (73%). The obtained NEs with LA-conjugates based on Pluronic F68 and PC were stable during long-term storage (more than 12 months) at room temperature. The effect of the obtained NEs of LA-conjugates on platelet aggregation (Pt) caused by arachidonic acid (AA) was determined, and a mechanism of their action was proposed.


2019 ◽  
Vol 26 (1) ◽  
Author(s):  
William Ottestad ◽  
Ingrid N. Rognes ◽  
Erlend Skaga ◽  
Cassandra Frisvoll ◽  
Guttorm Haraldsen ◽  
...  

Abstract Background HMGB1 is a mediator of systemic inflammation in sepsis and trauma, and a promising biomarker in many diseases. There is currently no standard operating procedure for pre-analytical handling of HMGB1 samples, despite that pre-analytical conditions account for a substantial part of the overall error rate in laboratory testing. We hypothesized that the considerable variations in reported HMGB1 concentrations and kinetics in trauma patients could be partly explained by differences in pre-analytical conditions and choice of sample material. Methods Trauma patients (n = 21) admitted to a Norwegian Level I trauma center were prospectively included. Blood was drawn in K2EDTA coated tubes and serum tubes. The effects of delayed centrifugation were evaluated in samples stored at room temperature for 15 min, 3, 6, 12, and 24 h respectively. Plasma samples subjected to long-term storage in − 80 °C and to repeated freeze/thaw cycles were compared with previously analyzed samples. HMGB1 concentrations in simultaneously acquired arterial and venous samples were also compared. HMGB1 was assessed by standard ELISA technique, additionally we investigated the suitability of western blot in both serum and plasma samples. Results Arterial HMGB1 concentrations were consistently lower than venous concentrations in simultaneously obtained samples (arterial = 0.60 x venous; 95% CI 0.30–0.90). Concentrations in plasma and serum showed a strong linear correlation, however wide limits of agreement. Storage of blood samples at room temperature prior to centrifugation resulted in an exponential increase in plasma concentrations after ≈6 h. HMGB1 concentrations were fairly stable in centrifuged plasma samples subjected to long-term storage and freeze/thaw cycles. We were not able to detect HMGB1 in either serum or plasma from our trauma patients using western blotting. Conclusions Arterial and venous HMGB1 concentrations cannot be directly compared, and concentration values in plasma and serum must be compared with caution due to wide limits of agreement. Although HMGB1 levels in clinical samples from trauma patients are fairly stable, strict adherence to a pre-analytical protocol is advisable in order to protect sample integrity. Surprisingly, we were unable to detect HMGB1 utilizing standard western blot analysis.


2008 ◽  
Vol 85 (3) ◽  
pp. 198-209 ◽  
Author(s):  
R. G. Novy ◽  
J. L. Whitworth ◽  
J. C. Stark ◽  
S. L. Love ◽  
D. L. Corsini ◽  
...  

2008 ◽  
Vol 584-586 ◽  
pp. 1039-1044
Author(s):  
Andrey Korotitskiy ◽  
K.E. Inaekyan ◽  
Vladimir Brailovski ◽  
Sergey Prokoshkin

Ti-50.26at.%Ni shape memory alloy samples were subjected to cold rolling (CR) with true strains encompassing from moderate (logarithmic strain e=0.25) to severe (e=2.1) deformation. СR with e = 0.5 and more initiated a partial austenite amorphization. The evaluation of structural changes in the material during its long-term storage was performed using Vickers microhardness (HV) technique. It was shown that during storage at room temperature up to 9 months, microhardness varied following a dome-shaped trend, thus reflecting commonly encountered interaction between two concurrent time-dependent phenomena, the first responsible for the material hardening, and the second, for the material softening. To represent such phenomena, a simple mathematical model was proposed and experimentally validated.


Author(s):  
Margarita Ishmuratova ◽  
◽  
Damirzhan Baigarayev ◽  
Saltanat Tleukenova ◽  
Elena Gavrilkova ◽  
...  

This article presents the summarized data on cryopreservation of seeds of the medical plant Nepeta cataria. Cryopreservation is a highly promising method for saving of seed materials, allowing to organize long-term storage without viability loss. The purpose of present work is to optimize conditions of cryopreservation of seed materials of Nepeta cataria. Assessment of seed survival rate in the storage showed a linear decrease in seed viability and energy of germination. After 30 months of storage at the low positive temperature (+5 ºC) in paper pack seed rate decreased to 12.0 % and energy of germination to 11.2 %; after 4 years of storage seeds lost viability. During conduction of research the type of container, condition of thawing, optimal moisture of seeds and cryoprotectants are optimized. The optimal container for cryopreservation in liquid nitrogen was plastic cryo tubes; defrosting at room temperature. The best seed rate is found at moisture 3 %; the best cryoprotectant was glucose, the optimal concentration was 15 %. The result of the research is used for creation of the long-term storage medicinal cultures’ seed bank in the liquid nitrogen.


Author(s):  
Narendra K. Gupta

In a radioactive material (RAM) packaging, the formation of eutectic at the Pu/SS (plutonium/stainless steel) interface is a serious concern and must be avoided to prevent of leakage of fissile material to the environment. The eutectic temperature for the Pu/SS is rather low (410°C) and could seriously impact the structural integrity of the containment vessel under accident conditions involving fire. The 9975 packaging is used for long term storage of Pu bearing materials in the DOE complex where the Pu comes in contact with the stainless steel containment vessel. Due to the serious consequences of the containment breach at the eutectic site, the Pu/SS interface temperature is kept well below the eutectic formation temperature of 410°C. This paper discusses the thermal models and the results for the extended fire conditions (1500°F for 86 minutes) that exist in a long term storage facility and concludes that the 9975 packaging Pu/SS interface temperature is well below the eutectic temperature.


Author(s):  
Robert S. Dyer ◽  
Ella Barnes ◽  
Randall L. Snipes ◽  
Steinar Ho̸ibra˚ten ◽  
Valery Sveshnikov ◽  
...  

Northwest Russia contains large quantities of spent nuclear fuel (SNF) that potentially threaten the environmental security of the surrounding Arctic Region. The majority of the SNF from Russian decommissioned nuclear submarines is currently stored either onboard submarines or in floating storage vesssels in Northwest Russia. Some of the SNF is damaged, stored in an unstable condition, or of a type that cannot currently be reprocessed. Most of the existing storage facilities being used in Northwest Russia do not meet health and safety and physical security requirements. Existing Russian transport infrastructure and reprocessing facilities cannot meet the requirements for moving and reprocessing this fuel. Therefore, additional interim storage capacity is required. The removal, handling, interim storage, and shipment of the fuel pose technical, ecological, and security challenges. The U.S. Environmental Protection Agency (EPA), in cooperation with the U.S. Department of Defense and the Department of Energy’s (DOE) Oak Ridge National Laboratory, along with the Norwegian Defence Research Establishment, is working closely with the Ministry of Defense and the Ministry of Atomic Energy of the Russian Federation (RF) to develop an improved and integrated management system for interim storage of military SNF in NW Russia. The cooperative effort consists of three subprojects involving the development of: (1) a prototype dual-purpose, metal-concrete container for both transport and long-term storage of RF military SNF, (2) the first transshipment/interim storage facility for these containers, and (3) improved fuel preparation and cask loading procedures and systems to control the moisture levels within the containers. The first subproject, development of a prototype dual-purpose container, was completed in December 2000. This was the first metal-concrete container developed, licensed, and produced in Russia for both the transportation and storage of military SNF. These containers are now in serial production. Russia plans to use these containers for the transport and interim storage of military SNF from decommissioned nuclear submarines at naval installations in the Arctic and Far East. The second subproject, the design, construction, and licensing of the first transshipment/interim storage facility in Russia, was completed in September 2003. This facility can provide interim storage for up to nineteen 40-tonne SNF containers filled with SNF for a period not to exceed two years. The primary objective of building this transshipment/interim storage facility in Murmansk, Russia was to remove a bottleneck in the RF transportation infrastructure for moving containers, loaded with SNF, from the arctic region to PO “Mayak” for reprocessing or longer-term storage. The third subproject addresses the need to improve fuel conditioning and cask operating procedures to ensure safe storage of SNF for at least 50 years. This will involve the review and improvement of existing RF procedures and systems for preparing and loading the fuel in the specially designed casks for transport and long-term storage. This subproject is scheduled for completion in December 2003. Upon completion, these subprojects are designed to provide a physically secure, accountable, and environmentally sound integrated solution that will increase the capacity for removal and transfer of SNF from decommissioned RF submarines in the Russian Federation to PO “Mayak” in central Russia.


Sign in / Sign up

Export Citation Format

Share Document