Initial Colonization of Artificial Substrate: Community Development and Structure Studied by Scanning Electron Microscopy

1981 ◽  
Vol 38 (11) ◽  
pp. 1371-1384 ◽  
Author(s):  
Christiane Hudon ◽  
Edwin Bourget

The initial phases of subtidal and intertidal community development were observed using scanning electron microscopy on samples from plastic panels immersed monthly in the St. Lawrence Estuary.Bacteria and diatom populations were quantitatively evaluated on samples collected from May to November, 1978. The pattern of immersion and/or periodical emersion according to the level greatly influenced the community structure. Subtidal panels (−5.0 m) were rapidly colonized by bacteria while diatoms settled 2–7 wk later, depending on the season. Cocconeis spp. and Amphora spp. were the major diatom colonizers until mid-August. In September, Synedra tabulata settled on the panels. Until mid-September, all dominant species formed well-defined, generally monospecific clumps. In contrast with Cocconeis spp. and Amphora spp., which lie horizontally on the surface, S. tabulata, which is needlelike in shape, formed erect fan-shaped colonies. Other late invaders possessed a mucus stalk, raising themselves from the surface and thus better utilizing the vertical dimension. Clump overlap and increased species interactions occurred with higher cell densities. In the intertidal zone bacteria settled after 8–12 wk while Achnanthes brevipes var. parvula appeared after 20 wk, the only diatom species able to resist semidiurnal emersion. The ability of the panels to retain water through detritus and irregularities is probably the main factor allowing the development of this community. Panels emersed only at spring tides (monthly) were rapidly colonized by bacteria, and heavy diatom settlement occurred within 4 wk. Successive monthly emersions eliminated or strongly reduced diatom populations, which were replaced by filamentous (Ectocarpaceae) algae. The three types of communities are compared and the strategic advantage of upright forms is discussed in relation to population density, light availability, and detrital cover.Key words: St. Lawrence Estuary, artificial substrate, community structure, community development, Cocconeis spp., Synedra tabulata. Amphora spp., diatoms

1977 ◽  
Vol 96 (4) ◽  
pp. 506 ◽  
Author(s):  
Robert W. Paul ◽  
David L. Kuhn ◽  
James L. Plafkin ◽  
John Cairns ◽  
Judith G. Croxdale

Author(s):  
P.S. Porter ◽  
T. Aoyagi ◽  
R. Matta

Using standard techniques of scanning electron microscopy (SEM), over 1000 human hair defects have been studied. In several of the defects, the pathogenesis of the abnormality has been clarified using these techniques. It is the purpose of this paper to present several distinct morphologic abnormalities of hair and to discuss their pathogenesis as elucidated through techniques of scanning electron microscopy.


Author(s):  
P.J. Dailey

The structure of insect salivary glands has been extensively investigated during the past decade; however, none have attempted scanning electron microscopy (SEM) in ultrastructural examinations of these secretory organs. This study correlates fine structure by means of SEM cryofractography with that of thin-sectioned epoxy embedded material observed by means of transmission electron microscopy (TEM).Salivary glands of Gromphadorhina portentosa were excised and immediately submerged in cold (4°C) paraformaldehyde-glutaraldehyde fixative1 for 2 hr, washed and post-fixed in 1 per cent 0s04 in phosphosphate buffer (4°C for 2 hr). After ethanolic dehydration half of the samples were embedded in Epon 812 for TEM and half cryofractured and subsequently critical point dried for SEM. Dried specimens were mounted on aluminum stubs and coated with approximately 150 Å of gold in a cold sputtering apparatus.Figure 1 shows a cryofractured plane through a salivary acinus revealing topographical relief of secretory vesicles.


Author(s):  
Nakazo Watari ◽  
Yasuaki Hotta ◽  
Yoshio Mabuchi

It is very useful if we can observe the identical cell elements within the same sections by light microscopy (LM), transmission electron microscopy (TEM) and/or scanning electron microscopy (SEM) sequentially, because, the cell fine structure can not be indicated by LM, while the color is; on the other hand, the cell fine structure can be very easily observed by EM, although its color properties may not. However, there is one problem in that LM requires thick sections of over 1 μm, while EM needs very thin sections of under 100 nm. Recently, we have developed a new method to observe the same cell elements within the same plastic sections using both light and transmission (conventional or high-voltage) electron microscopes.In this paper, we have developed two new observation methods for the identical cell elements within the same sections, both plastic-embedded and paraffin-embedded, using light microscopy, transmission electron microscopy and/or scanning electron microscopy (Fig. 1).


Author(s):  
Ronald H. Bradley ◽  
R. S. Berk ◽  
L. D. Hazlett

The nude mouse is a hairless mutant (homozygous for the mutation nude, nu/nu), which is born lacking a thymus and possesses a severe defect in cellular immunity. Spontaneous unilateral cataractous lesions were noted (during ocular examination using a stereomicroscope at 40X) in 14 of a series of 60 animals (20%). This transmission and scanning microscopic study characterizes the morphology of this cataract and contrasts these data with normal nude mouse lens.All animals were sacrificed by an ether overdose. Eyes were enucleated and immersed in a mixed fixative (1% osmium tetroxide and 6% glutaraldehyde in Sorenson's phosphate buffer pH 7.4 at 0-4°C) for 3 hours, dehydrated in graded ethanols and embedded in Epon-Araldite for transmission microscopy. Specimens for scanning electron microscopy were fixed similarly, dehydrated in graded ethanols, then to graded changes of Freon 113 and ethanol to 100% Freon 113 and critically point dried in a Bomar critical point dryer using Freon 13 as the transition fluid.


Author(s):  
Jane A. Westfall ◽  
S. Yamataka ◽  
Paul D. Enos

Scanning electron microscopy (SEM) provides three dimensional details of external surface structures and supplements ultrastructural information provided by transmission electron microscopy (TEM). Animals composed of watery jellylike tissues such as hydras and other coelenterates have not been considered suitable for SEM studies because of the difficulty in preserving such organisms in a normal state. This study demonstrates 1) the successful use of SEM on such tissue, and 2) the unique arrangement of batteries of nematocysts within large epitheliomuscular cells on tentacles of Hydra littoralis.Whole specimens of Hydra were prepared for SEM (Figs. 1 and 2) by the fix, freeze-dry, coat technique of Small and Màrszalek. The specimens were fixed in osmium tetroxide and mercuric chloride, freeze-dried in vacuo on a prechilled 1 Kg brass block, and coated with gold-palladium. Tissues for TEM (Figs. 3 and 4) were fixed in glutaraldehyde followed by osmium tetroxide. Scanning micrographs were taken on a Cambridge Stereoscan Mark II A microscope at 10 KV and transmission micrographs were taken on an RCA EMU 3G microscope (Fig. 3) or on a Hitachi HU 11B microscope (Fig. 4).


Author(s):  
J.N. Ramsey ◽  
D.P. Cameron ◽  
F.W. Schneider

As computer components become smaller the analytical methods used to examine them and the material handling techniques must become more sensitive, and more sophisticated. We have used microbulldozing and microchiseling in conjunction with scanning electron microscopy, replica electron microscopy, and microprobe analysis for studying actual and potential problems with developmental and pilot line devices. Foreign matter, corrosion, etc, in specific locations are mechanically loosened from their substrates and removed by “extraction replication,” and examined in the appropriate instrument. The mechanical loosening is done in a controlled manner by using a microhardness tester—we use the attachment designed for our Reichert metallograph. The working tool is a pyramid shaped diamond (a Knoop indenter) which can be pushed into the specimen with a controlled pressure and in a specific location.


Sign in / Sign up

Export Citation Format

Share Document