The Deep Chlorophyll Maximum: Comparing Vertical Profiles of Chlorophyll a

1982 ◽  
Vol 39 (5) ◽  
pp. 791-803 ◽  
Author(s):  
John J. Cullen

The relationship between chlorophyll a and phytoplankton biomass (organic carbon content) is highly variable as is the yield of in vivo fluorescence per unit chlorophyll. Thus, vertical profiles of chlorophyll or in vivo fluorescence must be interpreted with caution if their ecological significance is to be established. Although the variability of carbon-to-chlorophyll ratios and fluorescence yield is large, much of it can be anticipated, corrected for, and usefully interpreted. Vertical profiles from different regions of the sea are presented; each has a deep chlorophyll maximum, but the probable mechanisms of their formation and maintenance differ widely. Most vertical distributions of chlorophyll can be explained by the interaction between hydrography and growth, behavior, or physiological adaptation of phytoplankton with no special consideration of grazing by herbivores, even though vertical distributions of epizooplankton are not uniform. The interaction between vertical profiles of zooplankton and chlorophyll will be better understood when the relationships between chlorophyll and phytoplankton biomass in those profiles is determined.Key words: chlorophyll a, fluorescence, phytoplankton, vertical structure

1993 ◽  
Vol 28 (6) ◽  
pp. 29-33 ◽  
Author(s):  
V. Vyhnálek ◽  
Z. Fišar ◽  
A. Fišarová ◽  
J. Komárková

The in vivo fluorescence of chlorophyll a was measured in samples of natural phytoplankton taken from the Římov Reservoir (Czech Republic) during the years 1987 and 1988. The fluorescence intensities of samples either with or without addition of 3-(3,4-dichlorophenyl)-1,1-dimethylurea (diuron, DCMU) were found reliable for calculating the concentration of chlorophyll a during periods when cyanobacteria were not abundant. The correction for background non-chlorophyll fluorescence appeared to be essential. No distinct correlation between a DCMU-induced increase of the fluorescence and primary production of phytoplankton was found.


2011 ◽  
Vol 8 (8) ◽  
pp. 2391-2406 ◽  
Author(s):  
A. Mignot ◽  
H. Claustre ◽  
F. D'Ortenzio ◽  
X. Xing ◽  
A. Poteau ◽  
...  

Abstract. In vivo fluorescence of Chlorophyll-a (Chl-a) is a potentially useful property to study the vertical distribution of phytoplankton biomass. However the technique is presently not fully exploited as it should be, essentially because of the difficulties in converting the fluorescence signal into an accurate Chl-a concentration. These difficulties arise noticeably from natural variations in the Chl-a fluorescence relationship, which is under the control of community composition as well as of their nutrient and light status. As a consequence, although vertical profiles of fluorescence are likely the most recorded biological property in the open ocean, the corresponding large databases are underexploited. Here with the aim to convert a fluorescence profile into a Chl-a concentration profile, we test the hypothesis that the Chl-a concentration can be gathered from the sole knowledge of the shape of the fluorescence profile. We analyze a large dataset from 18 oceanographic cruises conducted in case-1 waters from the highly stratified hyperoligotrophic waters (surface Chl-a = 0.02 mg m−3) of the South Pacific Gyre to the eutrophic waters of the Benguela upwelling (surface Chl-a = 32 mg m−3) and including the very deep mixed waters in the North Atlantic (Mixed Layer Depth = 690 m). This dataset encompasses more than 700 vertical profiles of Chl-a fluorescence as well as accurate estimations of Chl-a by High Performance Liquid Chromatography (HPLC). Two typical fluorescence profiles are identified, the uniform profile, characterized by a homogeneous layer roughly corresponding to the mixed layer, and the non-uniform profile, characterized by the presence of a Deep Chlorophyll Maximum. Using appropriate mathematical parameterizations, a fluorescence profile is subsequently represented by 3 or 5 shape parameters for uniform or non-uniform profiles, respectively. For both situations, an empirical model is developed to predict the "true" Chl-a concentration from these shape parameters. This model is then used to calibrate a fluorescence profile in Chl-a units. The validation of the approach provides satisfactory results with a median absolute percent deviation of 33 % when comparing the HPLC Chl-a profiles to the Chl-a-calibrated fluorescence. The proposed approach thus opens the possibility to produce Chl-a climatologies from uncalibrated fluorescence profile databases that have been acquired in the past and to which numerous new profiles will be added, thanks to the recent availability of autonomous platforms (profiling floats, gliders and animals) instrumented with miniature fluorometers.


1977 ◽  
Vol 22 (5) ◽  
pp. 919-925 ◽  
Author(s):  
Rudolf E. Slovacek ◽  
Patrick J. Hannan

Sign in / Sign up

Export Citation Format

Share Document