Effect of Long-Term Exposure to Acid, Aluminum, and Low Calcium on Adult Brook Trout (Salvelinus fontinalis). 1. Survival, Growth, Fecundity, and Progeny Survival

1988 ◽  
Vol 45 (9) ◽  
pp. 1623-1632 ◽  
Author(s):  
D. R. Mount ◽  
C. G. Ingersoll ◽  
D. D. Gulley ◽  
J. D. Fernandez ◽  
T. W. LaPoint ◽  
...  

Adult brook trout (Salvelinus fontinalis) were exposed to concentrations of acid, Al, and Ca representative of acidic and acid-sensitive surface waters. At low pH (4.42–5.03), survival and growth were reduced by elevated Al concentrations (486 μg/L) and low Ca concentrations (0.5 mg/L). Fecundity (number of eggs per female) was reduced by exposure to some treatment combinations, but this effect was mediated through reduced growth; number of eggs per unit body weight was not related to treatment. Viability of eggs from ail parental exposures was high when incubated in neutral water. In spite of this high viability, eggs from parents exposed to low Ca concentrations showed greater mortality when incubated in the parental exposure conditions than did eggs from unexposed parents. Although the potential for such "carryover effects" cannot be discounted, we conclude that impairment of egg production is not a likely mechanism for loss of brook trout populations from acidic surface waters.


1988 ◽  
Vol 45 (9) ◽  
pp. 1633-1642 ◽  
Author(s):  
D. R. Mount ◽  
J. R. Hockett ◽  
W. A. Gern

Adult brook trout (Salvelinus fontinalis) were exposed for 193 d (previtellogenesis to spawning) to six combinations of acid, Al, and low Ca. Survival and growth were reduced by low pH combined with low Ca concentrations. After 41 d of exposure, fish in ail low pH exposures showed depressed plasma osmolality and Na concentrations, but by day 97 this apparent osmoregulatory stress was compensated for in all but the most severe treatment (pH 4.97, 47 μg inorganic Al/L, 0.5 mg Ca/L). At the observed peak of yolking (day 147), fish exposed to this treatment also had mean concentrations of plasma estradiol, vitellogenin, and Ca of only half control values. Fecundity (eggs per female) was significantly reduced as well, but this reduction was due in part to decreased growth. Despite these abnormalities in ionoregulatory and reproductive physiology, fish in all treatment conditions produced mature eggs. Among fish in stressful conditions, individual variation in growth and physiological parameters appeared to be correlated with osmoregulatory status. We hypothesize that the suite of physiological disturbances observed are linked to osmoregulatory impairment.



1971 ◽  
Vol 28 (5) ◽  
pp. 655-662 ◽  
Author(s):  
J. M. McKim ◽  
D. A. Benoit

During a 22-month period, all developmental stages of the brook trout (Salvelinus fontinalis) were exposed to copper (Cu(II)) concentrations ranging from 32.5 to 1.9 μg/liter. The highest concentration decreased survival and growth in adult fish and reduced both number of viable eggs produced and hatchability. Survival, growth, and reproductive success of adults in copper concentrations from 17.4 to 3.4 μg/liter did not differ from the control (1.9 μg/liter). Concentrations of 32.5 and 17.4 μg/liter had marked adverse effects on survival and growth of alevins and juvenile fish. Effects of copper on alevins–juveniles from unexposed parents apparently are no different than the effects on alevins–juveniles from parents exposed to copper. The maximum acceptable toxicant concentration (MATC) for brook trout exposed to copper in water with a hardness of 45 mg/liter (as CaCO3) and a pH of 7.5 fell between 17.4 and 9.5 μg/liter copper. The mean 96-hr TL50 for 14-month-old brook trout exposed to copper was 100 μg/liter, and the application factor, MATC/96-hr TL50, lies between 0.17 and 0.10.



1981 ◽  
Vol 38 (12) ◽  
pp. 1701-1707 ◽  
Author(s):  
Dwight A. Webster ◽  
William A. Flick

Eleven year-classes of wild, domestic, and wild × domestic hybrid strains of brook trout (Salvelinus fontinalis) were stocked in a 0.19-ha Adirondack pond. Comparative survival and growth were assessed upon drainage in early fall. Rearing native wild strains to maturity in a hatchery, or domestic strains in a natural environment, did not consistently or materially affect survival of progeny, suggesting that superior performance of wild strains was largely inherent. Interstrain hybrids of wild × domestic showed survivals equivalent to the wild parents, but hybrids of two Canadian strains gave evidence of heterosis in both survival and net yield. Supplementary observations in other waters also indicated that one strain (Assinica) may be less adaptable to Adirondack conditions than the other (Temiscamie).Key words: brook trout, wild trout, domesticated trout, interstrain hybrid trout, survival, growth, heterosis, hybrid vigor



2010 ◽  
Vol 1 (2) ◽  
pp. 146-151 ◽  
Author(s):  
John A. Sweka ◽  
Kyle J. Hartman ◽  
Jonathan M. Niles

Abstract In this study, we resurveyed stream habitat and sampled brook trout Salvelinus fontinalis populations 6 y after large woody debris additions to determine long-term changes in habitat and brook trout populations. In a previous study, we added large woody debris to eight streams in the central Appalachians of West Virginia to determine whether stream habitat could be enhanced and brook trout populations increased following habitat manipulation. The large woody debris additions had no overall effect on stream habitat and brook trout populations by 6 y after the additions. The assumption that a lack of large woody debris is limiting stream habitat and brook trout populations was not supported by our results. In high-gradient streams, habitat complexity may be governed more by the abundance of boulders and large woody debris may have a lesser influence on trout populations.



1973 ◽  
Vol 30 (12) ◽  
pp. 1811-1817 ◽  
Author(s):  
Roger O. Hermanutz ◽  
Leonard H. Mueller ◽  
Kenneth D. Kempfert

The toxic effects of captan on survival, growth, and reproduction of fathead minnows (Pimephales promelas) and on survival of bluegills (Lepomis macrochirus) and brook trout (Salvelinus fontinalis) were determined in a flow-through system. In a 45-week exposure of fathead minnows, survival and growth were adversely affected at 39.5 μg/liter. Adverse effects on spawning were suspected but not statistically demonstrated at 39.5 and 16.5 μg/liter. The maximum acceptable toxicant concentration (MATC), based on survival and growth, lies between 39.5 and 16.5 μg/liter. The lethal threshold concentration (LTC) derived from acute exposures was 64 μg/liter, resulting in an application factor (MATC/LTC) between 0.26 and 0.62. LTC values for the bluegill and brook trout were 72 and 29 μg/liter, respectively. The estimated MATC is between 44.6 and 18.7 μg/liter for the bluegill and between 18.0 and 7.5 μg/liter for the brook trout.The half-life of captan in Lake Superior water with a pH of 7.6 is about 7 hr at 12 C and about 1 hr at 25 C. Breakdown products from an initial 550 μg/liter of captan were not lethal to 3-month-old fathead minnows.



1981 ◽  
Vol 38 (12) ◽  
pp. 1672-1684 ◽  
Author(s):  
J. M. Fraser

Matched plantings of domestic strain and interstrain hybrid (or wild strain) brook trout (Salvelinus fontinalis) were made annually in nine small Precambrian Shield lakes during 1973–77. Recoveries of planted fish were made by gillnetting and/or angling during 1974–80. In six study lakes, hybrids (and wild strains) were recovered at rates two to four times greater than the domestic strain; in three lakes recoveries were similar. Most domestic strain trout were caught in the year following planting whereas recoveries of hybrids and wild strains were spread over 3–4 yr. Each kilogram of hybrid (or wild) planted yielded 5.6 kg (1.2–12.3); each kilogram of domestic strain planted yielded 0.8 kg (0.2–2.1). Lakes containing only minnows and sticklebacks yielded the highest returns of brook trout; lakes containing competitive species yielded low returns. Rapid growth of brook trout occurred in lakes containing only minnows and sticklebacks; slowest growth was noted in lakes supporting white suckers (Catostomus commersoni). Domestic strain brook trout and the matched hybrid grew at approximately the same rate within a lake and in seven of the nine lakes ate the same food. The performance of the Nipigon × domestic hybrid qualifies it for consideration as a replacement for the domestic brook trout presently planted in Ontario lakes.Key words: planting, brook trout, trout strain, hybrid, Precambrian Shield, survival, stock



1976 ◽  
Vol 33 (7) ◽  
pp. 1525-1539 ◽  
Author(s):  
William A. Flick ◽  
Dwight A. Webster

Hatchery-reared wild and domestic strains of brook trout (Salvelinus fontinalis) were released in natural lakes, and survival and growth estimated at semiannual intervals throughout the life span. Angling was restricted. Four experiments with two year-classes involved three different Adirondack Mountain (New York) wild strains and two domestic strains, a fifth experiment included two wild strains from James Bay, Quebec and a hybrid between one of these (Assinica Lake) and a New York domestic strain. Wild and hybrid strains consistently exhibited greater longevity (5–7 yr) compared with domestic (few recovered after 3 yr). Climax sizes were not much different, except the Domestic × Assinica hybrid that was substantially larger than either of the two parents. Gross production and yield to angling of any given strain cohort was correlated (r = 0.93) and life-span gross production was 50% greater for wild and hybrid groups per unit fish stocked. Biomass stocked per recruit was much larger for domestic strains, and taking this into account, the ratio of gross production to weight stocked was about 6 times greater. Increased costs of rearing nondomesticated strains, if any, must be taken into consideration in an economic evaluation, but use of wild and/or hybrid strains of trout offers significant benefits under management conditions of these experiments.



2021 ◽  
Author(s):  
Annette Cynthia Maher

Long-term records of the abundance of organisms are needed to detect more progressive changes in their populations as a result of external stressors. Long-term changes in historical Brook Trout



Author(s):  
Gary W. Holcombe ◽  
Duane A. Benoit ◽  
Edward N. Leonard


Sign in / Sign up

Export Citation Format

Share Document