Use of Zooplankton to Assess the Movement and Distribution of Alewife (Alosa pseudoharengus) in South-Central Lake Ontario in Spring

1991 ◽  
Vol 48 (11) ◽  
pp. 2250-2257 ◽  
Author(s):  
Robert O'Gorman ◽  
Edward L. Mills ◽  
Joe DeGisi

Data from assessments of fish and zooplankton conducted during April and May–June 1986–88 in south-central Lake Ontario were examined for evidence that zooplankton size structure can be used to follow the movement of alewife (Alosa pseudoharengus). The spring influx of alewife into nearshore waters was linked with water temperature and coincided with a decline in the mean length of crustacean zooplankton and the virtual disappearance of zooplankters [Formula: see text]. Alewife moving inshore to spawn fed heavily on the largest zooplankters, negating the possibility that changes in zooplankton size were wholly a response to seasonal recruitment as waters warm and the composition shifts to Bosmina. Offshore, there was usually no significant (P < 0.05) change in mean lengths of zooplankton in the upper water column between April and May–june, and zooplankters [Formula: see text] always remained abundant, suggesting that few alewife were there from April through mid-june. We conclude that in large freshwater lakes where a planktivore is abundant, yet spatially concentrated, changes in size of crustacean zooplankton can facilitate understanding of the fish's movement and distribution.

2010 ◽  
Vol 67 (4) ◽  
pp. 754-762 ◽  
Author(s):  
Jennifer B. Korosi ◽  
Andrew M. Paterson ◽  
Anna M. DeSellas ◽  
John P. Smol

Understanding the long-term controls on cladoceran size structure has important implications for aquatic ecosystems. Although there has been considerable interest in zooplankton size trends for Canadian Shield lakes, data are not available for zooplankton size structure prior to the period of anthropogenic disturbances. Here, we present pre- and post-impact size data for the common pelagic cladocerans Bosmina and Daphnia for 44 well-studied Shield lakes in south-central Ontario (Canada). We show that Daphnia were larger and that the length of Bosmina body appendages (mucrones and antennules) was longer in pre-industrial times than they are today. The reduction in Bosmina appendage length we observed may suggest a reduction in copepod predation pressure since pre-industrial times. Reduced maximum body size in Daphnia is a predicted response to a warming climate in north temperate lakes; however, we suggest that alternate explanations, specifically acidification and subsequent recovery following emission reductions, should also be explored as the primary drivers of Daphnia size changes in this lake set. Overall, our results highlight the importance of pre-impact data for understanding the long-term controls on cladoceran body size from pre-1850 to present.


Author(s):  
Lauren Emily Barth ◽  
Brian J. Shuter ◽  
W. Gary Sprules ◽  
Charles K. Minns ◽  
James A Rusak

We evaluated the crustacean zooplankton size spectrum as an indicator of lake characteristics and ecosystem change. First, we used time-series from seven Canadian Shield lakes to identify the factors associated with among-lake and among-year variability in the spectrum slope (relative abundance of small and large zooplankton) and centered height (total abundance). Second, we used time-series from an invaded and three control lakes to assess change in mean and variability in slope and height due to a Bythotrephes invasion. We found that the slope and the height reflected among-lake predictors related to morphometry. The slope was responsive to long-term declining lake phosphorus levels, whereas the height reflected both increases in dissolved organic carbon and decreases in ice duration. We detected a significant increase (i.e. flattening) in mean slope and substantial (up to 120%) increases in the CV of height after Bythotrephes invaded Harp Lake. Thus, the zooplankton size spectrum was responsive to long-term environmental change and a strong top-down perturbation can be detected through regular and frequent monitoring programs.


1992 ◽  
Vol 49 (10) ◽  
pp. 2009-2019 ◽  
Author(s):  
Edward L. Mills ◽  
Robert O'Gorman ◽  
Joe DeGisi ◽  
Roy F. Heberger ◽  
Robert A. House

Diets and length–weight relationships of Lake Ontario alewife (Alosa pseudoharengus) in 1972 differed from those in 1988; the large cladoceran Bythotrephes cederstroemi colonized the lake during the mid-1980's. Micro-crustacean zooplankton were the dominant prey of alewife during April–October in 1972 and 1988. Although Bythotrephes was not found in 1988 net samples, it replaced other zooplankters in the alewife's diet. Typically, tailspines were the only part of Bythotrephes in alewife stomachs; their frequency was high in April–May, diminished rapidly in summer and was very low by fall. In spring 1988, alewife [Formula: see text] were in better condition than in spring 1972 and this may have been due to larger fish feeding more heavily on Bythotrephes. Variation in diet among widely separated sampling sites was due to differences in alewife abundance, stability of thermal structure, progress of zooplankton community development and distance to the mouth of the Niagara River (through which Bythotrephes probably enter the lake in summer and fall). In the Great Lakes, inter- and intralake differences in diet clearly exist, and these must be incorporated into models of alewife planktivory to gain an accurate understanding of energy flow between trophic levels.


2001 ◽  
Vol 58 (12) ◽  
pp. 2341-2350 ◽  
Author(s):  
Norman D Yan ◽  
Agnes Blukacz ◽  
W Gary Sprules ◽  
Paul K Kindy ◽  
David Hackett ◽  
...  

The crustacean zooplankton community of Harp Lake, Ontario, Canada, has changed appreciably since the invasion by the spiny water flea, Bythotrephes. Crustacean species richness has declined, large-bodied Cladocera have replaced small-bodied ones, and there has been a downward trend in the total abundance of zooplankton because copepod abundance has remained stable while Cladoceran abundance has declined. Although the zooplankton community has now been stable for 4 years (1995–1998), the biology of the invader has changed dramatically. In particular, there have been 10-fold differences in the mean annual abundance of Bythotrephes in this 5-year period and substantial changes in the timing of population maxima. We attribute these changes to two factors: (i) transition from a summer to a fall switch from parthenogenesis to gametogenesis and (ii) interannual differences in the thickness of a warm, dark stratum in the lake. We hypothesize that this stratum provides a refuge for Bythotrephes from predation by lake herring, Coregonus artedii.


2020 ◽  
Vol 3 (1) ◽  
pp. ACCEPTED
Author(s):  
Rho-Jeong Rae

This study investigated the boreal digging frog, Kaloula borealis, to determine the egg hatching period and whether the hatching period is affected by incubation temperature. The results of this study showed that all the eggs hatched within 48 h after spawning, with 28.1% (±10.8, n=52) hatching within 24 h and 99.9% (±0.23, n=49) within 48 h after spawning. A significant difference was noted in the mean hatching proportion of tadpoles at different water temperatures. The mean hatching rates between 15 and 24 h after spawning was higher at a water temperature of 21.1 (±0.2) °C than at 24.1 (±0.2) °C. These results suggest that incubation temperature affected the early life stages of the boreal digging frog, since they spawn in ponds or puddles that form during the rainy season.


Author(s):  
Bin Ji ◽  
Cheng Liu ◽  
Jiechao Liang ◽  
Jian Wang

Urban freshwater lakes play an indispensable role in maintaining the urban environment and are suffering great threats of eutrophication. Until now, little has been known about the seasonal bacterial communities of the surface water of adjacent freshwater urban lakes. This study reported the bacterial communities of three adjacent freshwater lakes (i.e., Tangxun Lake, Yezhi Lake and Nan Lake) during the alternation of seasons. Nan Lake had the best water quality among the three lakes as reflected by the bacterial eutrophic index (BEI), bacterial indicator (Luteolibacter) and functional prediction analysis. It was found that Alphaproteobacteria had the lowest abundance in summer and the highest abundance in winter. Bacteroidetes had the lowest abundance in winter, while Planctomycetes had the highest abundance in summer. N/P ratio appeared to have some relationships with eutrophication. Tangxun Lake and Nan Lake with higher average N/P ratios (e.g., N/P = 20) tended to have a higher BEI in summer at a water temperature of 27 °C, while Yezhi Lake with a relatively lower average N/P ratio (e.g., N/P = 14) tended to have a higher BEI in spring and autumn at a water temperature of 9–20 °C. BEI and water temperature were identified as the key parameters in determining the bacterial communities of lake water. Phosphorus seemed to have slightly more impact on the bacterial communities than nitrogen. It is expected that this study will help to gain more knowledge on urban lake eutrophication.


1992 ◽  
Vol 49 (11) ◽  
pp. 2281-2290 ◽  
Author(s):  
Richard D. Robarts ◽  
Marlene S. Evans ◽  
Michael T. Arts

Our data support empirical models indicating that algal productivity is low relative to total phosphorus (TP) levels in prairie lakes with high sulphate concentrations. Mean chlorophyll accounted for 91.1% of the variance in euphotic zone primary production (ΣA) in Humboldt Lake (total dissolved solids (TDS) = 3.3 g∙L−1; Zmax = 6 m), while TP, total dissolved phosphorus, and water temperature accounted for 82.7% of ΣA variance in Redberry Lake (TDS = 20.9 g∙L−1; Zmax = 17 m). The relative importance of these variables to ΣA resulted from biological, chemical, and physical differences of these lakes. Light usually penetrated to the bottom of Redberry Lake due to a mean euphotic zone (Zeu) chlorophyll of 1.7 mg∙m−3, while Humboldt Lake's mean Zeu was 3.4 m with a mean chlorophyll concentration of 62.6 mg∙m−3. Chlorophyll was the dominant factor correlated with light penetration in Humboldt Lake (r2 = 0.65) but not in Redberry Lake. Photosynthetic capacity was correlated (r2 = 0.72) with water temperature only in Redberry Lake. The mean ΣA was 57.1 and 230.2 mg C∙m−2∙h−1 for Redberry and Humboldt lakes, respectively.


2021 ◽  
Vol 664 ◽  
pp. 59-77
Author(s):  
AB Demidov ◽  
IN Sukhanova ◽  
TA Belevich ◽  
MV Flint ◽  
VI Gagarin ◽  
...  

Climate-induced variability of phytoplankton size structure influences primary productivity, marine food web dynamics, biosedimentation and exchange of CO2 between the atmosphere and ocean. Investigation of phytoplankton size structure in the Arctic Ocean is important due to rapid changes in its ecosystems related to increasing temperature and declining sea ice cover. We estimated the contribution of surface micro-, nano- and picophytoplankton to the total carbon biomass, chlorophyll a concentration and primary production in the Kara and Laptev Seas and investigated the relationships of these phytoplankton size groups with environmental factors which determine their spatial variability. Additionally, we compared chlorophyll specific carbon fixation rate, specific growth rate and carbon to chlorophyll ratios among different phytoplankton size groups. The investigation was carried out from August to September 2018. Generally, picophytoplankton was dominant in terms of chlorophyll a and primary production in the whole study area. The spatial variability of phytoplankton size classes was influenced by river discharge and relied mainly on water temperature, salinity and dissolved silicon concentration. Microphytoplankton prevailed across the river runoff region under conditions of low salinity and relatively high water temperature, while picophytoplankton was predominant under conditions of high salinity and low water temperature. Our study is the first to characterize size-fractionated phytoplankton abundance in the Kara and Laptev Seas, and provides a baseline for future assessment of the response of Kara and Laptev Sea ecosystems to climate-induced processes using phytoplankton size structure.


1995 ◽  
Vol 52 (5) ◽  
pp. 925-935 ◽  
Author(s):  
Edward L. Mills ◽  
Connie Adams ◽  
Robert O'Gorman ◽  
Randall W. Owens ◽  
Edward F. Roseman

The objective of this study was to describe the diet of young-of-the-year and adult alewife (Alosa pseudoharengus) and rainbow smelt (Osmerus mordax) in nearshore waters coincident with the colonization of Lake Ontario by Dreissena. Laboratory experiments and field observations indicated that alewife and rainbow smelt consumed dreissenid veligers and that the veligers remained intact and identifiable in the digestive tract for several hours. Dreissenid larvae were found in field-caught alewife and rainbow smelt in August 1992, even though veliger densities were low (<0.1/L). Zooplankton dominated the diet of all fish and veliger larvae were <0.1% of the biomass of prey eaten by these fish. Density of veligers and the distribution of settled dreissenids declined from west to east along the south shore of Lake Ontario. Based on veliger consumption rates we measured and the abundance of veligers and planktivores, we conclude that planktivory by alewife and smelt in the nearshore waters of Lake Ontario did not substantially reduce the number of veligers during 1991–1993. However, our results indicate that if the density of veligers in Lake Ontario decreases, and if planktivores remain abundant, planktivory on veliger populations could be significant.


Sign in / Sign up

Export Citation Format

Share Document