Stunting of Wild Coho Salmon (Oncorhynchus kisutch) in Seawater: Patterns of Plasma Thyroid Hormones, Cortisol, and Growth Hormone

1992 ◽  
Vol 49 (3) ◽  
pp. 458-461 ◽  
Author(s):  
Vladimir S. Varnavsky ◽  
Tatsuya Sakamoto ◽  
Tetsuya Hirano

Under natural conditions, some coho salmon presmolts (Oncorhynchus kisutch) in Kamchatka have been observed to migrate prematurely to the sea and fail to grow in brackish water for prolonged periods (natural stunts). Plasma levels of growth hormone, cortisol, thyroxine, and triiodothyronine were measured in coho salmon parr captured in the river (freshwater), smolts migrating downstream captured at the river mouth (brackish water), smolts in the sea (seawater), and natural stunts in the inlet (brackish water). The physiological conditions of natural stunts seem analogous to those of hatchery-derived stunts observed in hatchery-reared juveniles in sea pens, with normal plasma sodium concentration, low levels of thyroid hormones and cortisol, and high growth hormone levels.

1994 ◽  
Vol 51 (10) ◽  
pp. 2170-2178 ◽  
Author(s):  
J. Mark Shrimpton ◽  
Nicholas J. Bernier ◽  
George K. Iwama ◽  
David J. Randall

We compared the saltwater tolerance of coho salmon (Oncorhynchus kisutch) juveniles that were reared in different environments. The groups examined consisted of fish reared exclusively in the hatchery, a hatchery group transplanted into the upper watershed of the river (colonized), and wild fish from natural spawning broodstock in the river. Although hatchery fish were much larger than their wild or colonized counterparts, they consistently showed a reduced saltwater tolerance as assessed by a much greater perturbation in plasma sodium concentration following transfer to salt water. Within each group there was no relationship between size of the fish and saltwater tolerance. Following transfer to sea water, hatchery fish showed a significant decline in haematocrit and a significant increase in circulating plasma cortisol concentration. Neither of these changes was seen in wild smolts. Hatchery fish possessed fewer chloride cells, and lower specific activities of the enzymes Na+K+ATPase and citrate synthase. The weaker osmoregulatory ability of hatchery fish led to a greater mortality following abrupt transfer to 35‰ seawater. We believe that the differences in saltwater tolerance seen among the different groups of fish are due to rearing environment.


2014 ◽  
pp. 83-89
Author(s):  
Dung Ngo ◽  
Thi Nhan Nguyen ◽  
Khanh Hoang

Objective: Study on 106 patients with closed head injury, assessment of serum ADH concentration, correlation with Glasgow score, sodium and plasma osmotic pressure. Patients and methods: Patients with closed head injuries were diagnosed determined by computerized tomography, admitted to the Hue Central Hospital 72 hours ago. Results: (i) Serum concentration of ADH 42.21 ± 47.80 pg/ml. (ii) There is a negative correlation between serum levels of ADH with: (1) Glasgow point r = -0.323, p <0.01; (2) Plasma sodium concentration r = - 0.211, p > 0.05; (3) Plasma osmotic pressure r = - 0.218, p> 0.05. Conclusion: There is a negative correlation between serum levels of ADH with Glasgow scale, plasma sodium concentration and osmotic pressure in plasma. Key words: ADH traumatic brain injury.


Nephron ◽  
2021 ◽  
pp. 1-3
Author(s):  
Rosa D. Wouda ◽  
Rik H.G. Olde Engberink ◽  
Eliane F.E. Wenstedt ◽  
Jetta J. Oppelaar ◽  
Liffert Vogt

1998 ◽  
Vol 275 (5) ◽  
pp. R1605-R1610 ◽  
Author(s):  
Takamasa Tsuchida ◽  
Yoshio Takei

The effects of eel atrial natriuretic peptide (ANP) on drinking were investigated in eels adapted to freshwater (FW) or seawater (SW) or in FW eels whose drinking was stimulated by a 2-ml hemorrhage. An intra-arterial infusion of ANP (0.3–3.0 pmol ⋅ kg−1 ⋅ min−1), which increased plasma ANP level 1.5- to 20-fold, inhibited drinking dose dependently in all groups of eels. The drinking rate recovered to the level before ANP infusion within 2 h after infusate was replaced by saline. The inhibition at 3.0 pmol ⋅ kg−1 ⋅ min−1was profound in FW eels and hemorrhaged FW eels, whereas significant drinking still remained after inhibition in SW eels. Plasma ANG II concentration also decreased dose dependently during ANP infusion and recovered to the initial level after saline infusion in all groups of eels. The decrease at 3.0 pmol ⋅ kg−1 ⋅ min−1was large in FW eels and hemorrhaged FW eels compared with that of SW eels. Thus the changes in drinking rate and plasma ANG II level were parallel during ANP infusion. Plasma sodium concentration and osmolality decreased during ANP infusion in SW and FW eels, and they were restored after saline infusion. In hemorrhaged FW eels, however, ANP infusion did not alter plasma sodium concentration and osmolality. Hematocrit did not change during ANP infusion in any group of eels. Collectively, ANP infusion at physiological doses decreased drinking rate and plasma ANG II concentration in parallel in both FW and SW eels. It remains undetermined whether the inhibition of drinking is caused by direct action of ANP or through inhibition of ANG II, which is known as a potent dipsogen in all vertebrate species, including eels.


2015 ◽  
Vol 50 (2) ◽  
pp. 141-146 ◽  
Author(s):  
Michael A. McKenney ◽  
Kevin C. Miller ◽  
James E. Deal ◽  
Julie A. Garden-Robinson ◽  
Yeong S. Rhee

Context: Twenty-five percent of athletic trainers administer pickle juice (PJ) to treat cramping. Anecdotally, some clinicians provide multiple boluses of PJ during exercise but warn that repeated ingestion of PJ may cause hyperkalemia. To our knowledge, no researchers have examined the effect of ingesting multiple boluses of PJ on the same day or the effect of ingestion during exercise. Objective: To determine the short-term effects of ingesting a single bolus or multiple boluses of PJ on plasma variables and to characterize changes in plasma variables when individuals ingest PJ and resume exercise. Design: Crossover study. Setting: Laboratory. Patients or Other Participants: Nine euhydrated men (age = 23 ± 4 years, height = 180.9 ± 5.8 cm, mass = 80.7 ± 13.8 kg, urine specific gravity = 1.009 ± 0.005). Intervention(s): On 3 days, participants rested for 30 minutes, and then a blood sample was collected. Participants ingested 0 or 1 bolus (1 mL·kg−1 body weight) of PJ, donned sweat suits, biked vigorously for 30 minutes (approximate temperature = 37°C, relative humidity = 18%), and had a blood sample collected. They either rested for 60 seconds (0- and 1-bolus conditions) or ingested a second 1 mL·kg−1 body weight bolus of PJ (2-bolus condition). They resumed exercise for another 35 minutes. A third blood sample was collected, and they exited the environmental chamber and rested for 60 minutes (approximate temperature = 21°C, relative humidity = 18%). Blood samples were collected at 30 and 60 minutes postexercise. Main Outcome Measure(s): Plasma sodium concentration, plasma potassium concentration, plasma osmolality, and changes in plasma volume. Results: The number of PJ boluses ingested did not affect plasma sodium concentration, plasma potassium concentration, plasma osmolality, or changes in plasma volume over time. The plasma sodium concentration, plasma potassium concentration, and plasma osmolality did not exceed 144.6 mEq·L−1 (144.6 mmol·L−1), 4.98 mEq·L−1 (4.98 mmol·L−1), and 289.5 mOsm·kg−1H2O, respectively, in any condition at any time. Conclusions: Ingesting up to 2 boluses of PJ and resuming exercise caused negligible changes in blood variables. Ingesting up to 2 boluses of PJ did not increase plasma sodium concentration or cause hyperkalemia.


1986 ◽  
Vol 106 (2) ◽  
pp. 209-217 ◽  
Author(s):  
Sarah C. Bolton ◽  
T. E. C. Weekes

SUMMARYAdrenaline was infused at three rates, 40, 15 or 3 μ/kg/h, in normal sheep and in sheep rendered hypercortisolaemic by infusion of cortisol at 150 μg/kg/h. In both normal and hypercortisolaemic animals, plasma concentrations of glucose and free fatty acids were increased by adrenaline treatment; plasma phosphate decreased with all treatments; plasma magnesium and potassium decreased on infusion of adrenaline at 40 or 15, but not at 3 μg/kg/h; plasma calcium decreased only on infusion of adrenaline in hypercortisolaemic animals, and plasma sodium concentration was unaffected by treatment.Induction of a degree of lipolysis likely to occur in the field was not associated with a marked decrease in plasma magnesium.


Sign in / Sign up

Export Citation Format

Share Document