Improvements to the Diurnal Upstream–Downstream Dissolved Oxygen Change Technique for Determining Whole-Stream Metabolism in Small Streams

1994 ◽  
Vol 51 (7) ◽  
pp. 1591-1599 ◽  
Author(s):  
Erich R. Marzolf ◽  
Patrick J. Mulholland ◽  
Alan D. Steinman

Whole-stream metabolism in a first-order stream was measured using upstream–downstream changes in dissolved oxygen (DO) concentration measured at 1-min intervals over a 40-h period. The measured change in DO was corrected for reaeration flux using a reaeration coefficient determined from injections of conservative and volatile tracers. The whole-stream metabolism measurement was compared in the spring with in situ chamber measurements performed a few days later in the same stream reach. Chamber measurements of community respiration extrapolated to a 24-h period (CR24) were about one third the whole-stream measurements, while gross primary production (GPP) measured at midday in the chambers was roughly 20% less than the whole-stream estimate. Whole-stream GPP was higher during the spring just prior to forest canopy closure than in summer or autumn. Community respiration exceeded whole-stream GPP on all dates and was greatest during the summer. Our results suggest that this whole-stream approach provides a measure of total stream metabolism that is relevant to other stream ecosystem processes measured on reach scales, such as nutrient spiralling.

Author(s):  
Miraç Eryiğit ◽  
Fatih Evrendilek ◽  
Nusret Karakaya

This study aimed at investigating the effects of the urban wastewater treatment plant (WTP) discharges on the metabolism of Büyüksu Stream (Bolu, Turkey), and modelling the metabolism components as a function of measured environmental variables. Dissolved oxygen (DO) and water temperatures (Tw) were measured to estimate montly stream metabolism in the four reaches: Before and after discharges of the WTP, and the headwaters of Abant Creek and Mudurnu Creek feeding Büyüksu Stream. The DO and Tw measurements were performed for 17 months between August 2015 and December 2016. Metabolism components of community respiration (Rc), gross primary production (GPP) and net ecosystem metabolism (NEM) were estimated by using the two-station method. According to naturality gradient (reach disturbance gradients: before and after discharges, and headwaters of the creeks), mean metabolism components were compared by performing the one-way analysis of variance. The comparison results showed that the WTP discharges increased the average Rc from −30.6 g O2 m−2 day−1 to −130.9 g O2 m−2 day−1, and had no significant impact on the average GPP, statistically (15.6 and 9.1 g O2 m−2 day−1 before and after discharges, respectively). Validations of the multiple non-linear regression models of NEM and Rc gave coefficients of determination of 74.9% and 66.6%, respectively.


2011 ◽  
Vol 62 (2) ◽  
pp. 130 ◽  
Author(s):  
A. D. McKinnon ◽  
J. H. Carleton ◽  
S. Duggan

The Timor Sea is a major conduit of the Indonesian Throughflow characterised by large internal waves and tides. To ascertain whether these result in high pelagic productivity, we conducted experiments to determine the metabolic balance between net community production (NCP) and community respiration (CR) on the Sahul Shelf, the Sahul Shoals and the Yampi Shelf, an area of active hydrocarbon seeps. The barrier to vertical mixing of subthermocline nutrients represented by the halocline allowed new production to dominate in March 2004, whereas production in June 2005 depended on recycled nutrients. CR was correlated with dissolved organic carbon (DOC) in 2004, but with chlorophyll in 2005, suggesting that respiration was dominated by microheterotrophs in 2004 but by autotrophs in 2005. Overall, area-specific CR averaged 120 ± 92 (s.d.), 101 ± 52 and 61 ± 6 mmol O2 m–2 day–1, NCP averaged 109 ± 85 (s.d.), 32 ± 41 and 57 ± 10 mmol O2 m–2 day–1, and average gross primary production (= CR+NCP) : R ratios were 1.9, 1.4 and 1.9 on the shelf, at the Sahul Shoals and the Yampi Shelf, respectively. We suggest that differences in water column structure and internal wave activity drive intermittent high production events in a predominantly oligotrophic sea.


2014 ◽  
Vol 11 (16) ◽  
pp. 4529-4540 ◽  
Author(s):  
L. S. García-Corral ◽  
E. Barber ◽  
A. Regaudie-de-Gioux ◽  
S. Sal ◽  
J. M. Holding ◽  
...  

Abstract. The temperature dependence of planktonic metabolism in the subtropical North Atlantic Ocean was assessed on the basis of measurements of gross primary production (GPP), community respiration (CR) and net community production (NCP), as well as experimental assessments of the response of CR to temperature manipulations. Metabolic rates were measured at 68 stations along three consecutive longitudinal transects completed during the Malaspina 2010 Expedition, in three different seasons. Temperature gradients were observed in depth and at basin and seasonal scale. The results showed seasonal variability in the metabolic rates, the highest rates being observed during the spring transect. The overall mean integrated GPP / CR ratio was 1.39 ± 0.27 decreasing from winter to summer, and the NCP for the subtropical North Atlantic Ocean during the cruises exhibits net autotrophy (NCP > 0) in about two-thirds (66%) of the total sampled communities. Also, we reported the activation energies describing the temperature dependence of planktonic community metabolism, which was generally higher for CR than for GPP in the subtropical North Atlantic Ocean, as the metabolic theory of ecology predicts. Furthermore, we made a comparison of activation energies describing the responses to in situ temperature in the field (EaCR = 1.64 ± 0.36 eV) and those derived experimentally by temperature manipulations (EaCR = 1.45 ± 0.6 eV), which showed great consistency.


2018 ◽  
Author(s):  
Daffne C. López-Sandoval ◽  
Katherine Rowe ◽  
Paloma Carillo-de-Albonoz ◽  
Carlos M. Duarte ◽  
Susana Agusti

Abstract. Resolving the environmental drivers shaping planktonic communities is fundamental to understanding their variability, present and future, across the ocean. More specifically, resolving the temperature-dependence of planktonic communities in low productive waters is essential to predict the response of marine ecosystems to warming scenarios, as ocean warming leads to oligotrophication of the subtropical ocean. Here we quantified plankton metabolic rates along the Red Sea, a unique oligotrophic and warm environment, and analysed the drivers that regulate gross primary production (GPP), community respiration (CR) and the net community production (NCP). The study was conducted on six oceanographic surveys following a north-south transect along Saudi Arabian coasts. Our findings revealed that Chl-a specific GPP and CR rates increased with increasing temperature (R2 = 0.41 and 0.19, respectively, P 


Author(s):  
Johnathan Daniel Maxey ◽  
Neil David Hartstein ◽  
Dorathy Penjinus ◽  
Alan Kerroux

Stratified estuaries are home to expanding aquaculture activities whose ecological footprints can be observed through trends in microbial community respiration in the water column. Bottle incubations are widely used to measure water column community respiration in marine and freshwater ecosystems by measuring the flux of dissolved oxygen occurring in the bottle over a period of time. When in situ dissolved oxygen (DO) concentrations are markedly different than DO concentration of the incubation medium the potential for diffusion of oxygen across the bottle opening is great and may be especially pronounced in strongly stratified systems with relatively low rates of pelagic oxygen consumption. We incubated 60 Biochemical Oxygen Demand (BOD) bottles filled with sterilized water with DO concentrations ranging from 2.51 mg O2 L-1 to 10.03 mg O2 L-1 for 24 hours in a temperature controlled water bath. There was a significant relationship when DO flux was set as a function of initial DO (DO Flux = -0.0017x + 0.0085, r2 = 0.72, p < 2.2 e-16). DO fluxes ranged from -0.012 mg O2 L-1 hour-1 to 0.005 mg O2 L-1 hour-1 for bottles incubated with initial DO ranging from 10.03 mg O2 L-1 to 3.31 mg O2 L-1, respectively. These results suggest that diffusion across the ground glass seal of BOD bottles is possible and that extra precaution through parallel diffusion controls should be considered when measuring pelagic respiration using BOD bottle incubations in systems with relatively low or relatively high in situ DO concentrations.


2020 ◽  
Vol 17 (2) ◽  
pp. 265-279 ◽  
Author(s):  
Jinyan Yang ◽  
Belinda E. Medlyn ◽  
Martin G. De Kauwe ◽  
Remko A. Duursma ◽  
Mingkai Jiang ◽  
...  

Abstract. The response of mature forest ecosystems to a rising atmospheric carbon dioxide concentration (Ca) is a major uncertainty in projecting the future trajectory of the Earth's climate. Although leaf-level net photosynthesis is typically stimulated by exposure to elevated Ca (eCa), it is unclear how this stimulation translates into carbon cycle responses at the ecosystem scale. Here we estimate a key component of the carbon cycle, the gross primary productivity (GPP), of a mature native eucalypt forest exposed to free-air CO2 enrichment (the EucFACE experiment). In this experiment, light-saturated leaf photosynthesis increased by 19 % in response to a 38 % increase in Ca. We used the process-based forest canopy model, MAESPA, to upscale these leaf-level measurements of photosynthesis with canopy structure to estimate the GPP and its response to eCa. We assessed the direct impact of eCa, as well as the indirect effect of photosynthetic acclimation to eCa and variability among treatment plots using different model scenarios. At the canopy scale, MAESPA estimated a GPP of 1574 g C m−2 yr−1 under ambient conditions across 4 years and a direct increase in the GPP of +11 % in response to eCa. The smaller canopy-scale response simulated by the model, as compared with the leaf-level response, could be attributed to the prevalence of RuBP regeneration limitation of leaf photosynthesis within the canopy. Photosynthetic acclimation reduced this estimated response to 10 %. After taking the baseline variability in the leaf area index across plots in account, we estimated a field GPP response to eCa of 6 % with a 95 % confidence interval (−2 %, 14 %). These findings highlight that the GPP response of mature forests to eCa is likely to be considerably lower than the response of light-saturated leaf photosynthesis. Our results provide an important context for interpreting the eCa responses of other components of the ecosystem carbon cycle.


Sign in / Sign up

Export Citation Format

Share Document