Concordance of taxonomic composition patterns across multiple lake assemblages: effects of scale, body size, and land use

1999 ◽  
Vol 56 (11) ◽  
pp. 2029-2040 ◽  
Author(s):  
Andrew P Allen ◽  
Thomas R Whittier ◽  
David P Larsen ◽  
Philip R Kaufmann ◽  
Raymond J O'Connor ◽  
...  

We assessed environmental gradients and the extent to which they induced concordant patterns of taxonomic composition among benthic macroinvertebrate, riparian bird, sedimentary diatom, fish, and pelagic zooplankton assemblages in 186 northeastern U.S.A. lakes. Human population density showed a close correspondence to this region's dominant environmental gradient. This reflected the constraints imposed by climate and geomorphology on land use and, in turn, the effects of land use on the environment (e.g., increasing lake productivity). For the region as a whole, concordance was highest among assemblages whose taxa were relatively similar in body size. The larger-bodied assemblages (benthos, birds, fish) were correlated most strongly with factors of broader scale (climate, forest composition) than the diatoms and zooplankton (pH, lake depth). Assemblage concordance showed little or no relationship to body size when upland and lowland subregions were examined separately. This was presumably because differences in the scales at which each assemblage integrated the environment were obscured more locally. The larger-bodied assemblages showed stronger associations with land use than the diatoms and zooplankton. This occurred, in part, because they responded more strongly to broad-scale, nonanthropogenic factors that also affected land use. We argue, however, that the larger-bodied assemblages have also been more severely affected by human activities.

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Christian M. Ibáñez ◽  
Melany Waldisperg ◽  
Felipe I. Torres ◽  
Sergio A. Carrasco ◽  
Javier Sellanes ◽  
...  

Abstract Intertidal communities’ composition and diversity usually exhibit strong changes in relation to environmental gradients at different biogeographical scales. This study represents the first comprehensive diversity and composition description of polyplacophoran assemblages along the Peruvian Province (SE Pacific, 12°S–39°S), as a model system for ecological latitudinal gradients. A total of 4,775 chitons from 21 species were collected on twelve localities along the Peruvian Province. This sampling allowed us to quantitatively estimate the relative abundance of the species in this assemblage, and to test whether chitons conform to elementary predictions of major biogeographic patterns such as a latitudinal diversity gradient. We found that the species composition supported the division of the province into three ecoregional faunal groups (i.e. Humboldtian, Central Chile, and Araucanian). Though chiton diversity did not follow a clear latitudinal gradient, changes in species composition were dominated by smaller scale variability in salinity and temperature. Body size significantly differed by ecoregions and species, indicating latitudinal size-structure assamblages. In some localities body size ratios differed from a random assemblage, evidencing competition at local scale. Changes in composition between ecoregions influence body size structure, and their overlapping produce vertical size segregation, suggesting that competition coupled with environmental conditions structure these assemblages.


2011 ◽  
Vol 47 ◽  
pp. S35-S49 ◽  
Author(s):  
Yung-Chul Jun ◽  
Nan-Young Kim ◽  
Soon-Jik Kwon ◽  
Seung-Chul Han ◽  
In-Chul Hwang ◽  
...  

2005 ◽  
Vol 272 (1576) ◽  
pp. 2051-2057 ◽  
Author(s):  
M.A Collins ◽  
D.M Bailey ◽  
G.D Ruxton ◽  
I.G Priede

Body size trends across environmental gradients are widely reported but poorly understood. Here, we investigate contrasting relationships between size (body mass) and depth in the scavenging and predatory demersal ichthyofauna (800–4800 m) of the North-east Atlantic. The mean size of scavenging fish, identified as those regularly attracted to baited cameras, increased significantly with depth, while in non-scavengers there was a significant decline in size. The increase in scavenger size is a consequence of both intra and inter-specific effects. The observation of opposing relationships, in different functional groups, across the same environmental gradient indicates ecological rather than physiological causes. Simple energetic models indicate that the dissimilarity can be explained by different patterns of food distribution. While food availability declines with depth for both groups, the food is likely to be in large, randomly distributed packages for scavengers and as smaller but more evenly distributed items for predators. Larger size in scavengers permits higher swimming speeds, greater endurance as a consequence of larger energy reserves and lower mass specific metabolic rate, factors that are critical to survival on sporadic food items.


Sign in / Sign up

Export Citation Format

Share Document