Genetic diversity among varieties of the native forage grass Trichloris crinita based on AFLP markers, morphological characters, and quantitative agronomic traits

Genome ◽  
2006 ◽  
Vol 49 (8) ◽  
pp. 906-918 ◽  
Author(s):  
Pablo F Cavagnaro ◽  
Juan B Cavagnaro ◽  
José L Lemes ◽  
Ricardo W Masuelli ◽  
Carlos B Passera

We assessed the genetic diversity in Trichloris crinita (Poaceae) varieties from South America, using AFLPs, morphological characters, and quantitative agronomic traits. Owing to the importance of this species for range grazing, we first characterized the varieties based on forage productivity. Biomass production varied 9 fold among the materials evaluated. Analysis of AFLP fingerprints allowed the discrimination of all varieties with a few selected primer combinations. Pair-wise genetic similarities, using marker data, ranged from 0.31 to 0.92 (Jaccard coefficients). Marker-based unweighted pair group method with arithmetic averaging (UPGMA) cluster analysis did not show geographical clustering, but rather grouped the varieties according to their biomass production. We identified 18 markers associated with biomass production, of which 8 showed complete correlation (r = 1.00) with this trait. These DNA markers can be used to assist selection for high forage productivity in T. crinita. Cluster analysis using morphological and quantitative characters revealed 4 distinct groups of varieties, clearly separated according to their biomass yield. The variables foliage height and basal diameter were strongly correlated with biomass production and these phenotypic markers can be used to select productive plants. The relations among the varieties based on AFLP data were significantly correlated with those based on agronomic and morphological characters, suggesting that the 2 systems give similar estimates of genetic relations among the varieties.Key words: AFLP fingerprinting, genetic diversity, Trichloris crinita, morphology, biomass production.

2015 ◽  
Vol 60 (2) ◽  
pp. 293-299
Author(s):  
Basel Saleh

AbstractRandom amplified microsatellite polymorphism (RAMP) marker technique was employed to test its usefulness for assessing phylogenetic relationships in three genotypes of Arthrocnemum macrostachyum (Moric.) Moris. & Delponte from Syria. PCR reactions with 21 RAMP primer combinations (PCs) distinguished 145 loci, 139 of which (95.862%) were polymorphic. The (AG)8TC/OPE18 primer combination generated the highest number of fragments (11 amplicons), and the (AC)8T/OPE04 primer combination the fewest (4 amplicons). Average estimated polymorphic information content (PIC) was 0.431, with an average marker index (MI) of 2.836. Analysis by the unweighted pair group method using arithmetic averages (UPGMA) was performed and a dendrogram was constructed. UPGMA cluster analysis based on RAMP markers distinguished genotype 2, suggested here to be a subspecies, from genotypes 1 and 3. In this study the RAMP marker method proved to be a reliable tool for discriminating and estimating genetic diversity within A. macrostachyum.


HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 498-502 ◽  
Author(s):  
Chandra S. Thammina ◽  
David L. Kidwell-Slak ◽  
Stefan Lura ◽  
Margaret R. Pooler

The redbud (Cercis L. species) is a popular landscape plant grown widely in the United States. There are more than 20 cultivars of eastern redbud (Cercis canadensis L.) and at least three cultivars of Asian taxa (primarily Cercis chinensis Bunge) in the trade. The U.S. National Arboretum (USNA) has a diverse collection of Cercis germplasm collected in North America and Asia. Fourteen genomic simple sequence repeat (genomic-SSR) markers were used to analyze the genetic diversity of 53 accessions of Asian Cercis taxa from our collection, including C. chinensis, Cercis chingii Chun, Cercis gigantea ined., Cercis glabra Pamp., Cercis racemosa Oliv., and Cercis yunnanensis Hu and W. C. Cheng. SSR markers detected an average of 5.7 alleles per locus with a range of two to nine alleles. A dendrogram was generated by unweighted pair group method with arithmetic mean (UPGMA) cluster analysis using the Jaccard similarity coefficient. Four major clusters were identified. Accessions tended to group by taxa or provenance, but with some notable exceptions caused either by misidentification or nomenclatural confusion in the species. This information will be used for collection management and for making decisions in the breeding program to maximize genetic diversity of cultivated Cercis.


2007 ◽  
Vol 4 (2) ◽  
pp. 99-104 ◽  
Author(s):  
Cao Qing-Qin ◽  
Meng Hai-Jun ◽  
Wen Xiao-Peng ◽  
Yi Hua-Lin ◽  
Deng Xiu-Xin

AbstractThe genetic diversity of 43 male sterile and low fertility Citrus accessions, as well as 13 fertile ones, were assessed using simple sequence repeat markers (SSRs). Thirty-five polymorphic alleles were generated from eight primers (on average 4.4 alleles per primer). Cluster analysis was performed via unweighted pair group method analysis (UPGMA) using the NTSYS-pc version 2.10. The results showed that the accessions could be classified into three groups: cultivars of mandarin were classified into group 1; those of sweet orange, grapefruit, ponkan or tangor into group 2; and Microcitrus with male sterile cytoplasm into group 3. Cluster analysis also revealed that Satsuma mandarin was more closely related to Bendiguangju mandarin than to Zaoju, Mankieh or Huangyan Bendizao tangerine. The present study on genetic diversity of male sterile and low fertility Citrus will provide useful information for further collection, preservation and utilization of this plant.


2013 ◽  
Vol 21 (1) ◽  
pp. 83-89 ◽  
Author(s):  
Saida Sharifova ◽  
Sabina Mehdiyeva ◽  
Konstantinos Theodorikas ◽  
Konstantinos Roubos

Abstract Random Amplified Polymorphic DNA (RAPD) analysis was carried out on 19 Azerbaijan tomato genotypes, both cultivars and local populations. A total of 26 amplified products were revealed by 6 primers. The genetic similarity among evaluated genotypes ranged from 0.188 to 1.000. The lowest similarity was observed between cultivars ‘Azerbaijan’ and ‘Shakar’ (0.188), while the highest between ‘Elnur’ and ‘Garatag’ (1.000). The Unweighted Pair Group Method with Arithmetic Mean (UPGMA) cluster analysis based on Jaccard’s similarity coefficient divided genotypes into four main groups. The first group was the largest and consisted of 12 genotypes, while the fourth group was the smallest consisted of 1 genotype only. The most polymorphic primer was OPB-18 that presented a genetic diversity index of 0.823, while the least informative was primer OPG-17 with an index of 0.349. The average genetic diversity calculated from RAPD data was 0.665.


2007 ◽  
Vol 132 (3) ◽  
pp. 357-367 ◽  
Author(s):  
P. Escribano ◽  
M.A. Viruel ◽  
J.I. Hormaza

Cherimoya (Annona cherimola Mill.) is an underused fruit crop with a clear niche for expansion in subtropical climates. In this study, 16 simple sequence repeat (SSR) loci were used to find molecular polymorphisms among 279 cherimoya accessions from a worldwide ex situ field germplasm collection. A total of 79 amplification fragments were amplified with 16 pairs of SSR primers, with an average of 4.9 bands/SSR. Mean expected and observed heterozygosities averaged 0.53 and 0.44, respectively. The total value for the probability of identity was 4.34 × 10−8. The SSRs studied resulted in 267 different fingerprinting profiles, of which 258 were unique genotypes; the rest were putative cases of synonymies or mislabeling errors. Unweighted pair group method with arithmetic averages (UPGMA) cluster analysis indicated the relationships among the analyzed accessions, showing some specific groups related to their geographical origins. Analysis of molecular variance (AMOVA) was performed to examine the distribution of genetic variation of the 148 accessions collected from putative cherimoya origin areas in Ecuador and Peru, showing that the major variations occurred within valleys in each country. The results confirmed the usefulness of microsatellites for identification of genetic diversity and geographic origin of cherimoya and are discussed in terms of their implications for ex situ conservation of cherimoya genetic resources.


1970 ◽  
Vol 38 (2) ◽  
pp. 153-161 ◽  
Author(s):  
Saaimatul Huq ◽  
Md Shahidul Islam ◽  
Abu Ashraqur Sajib ◽  
Nadim Ashraf ◽  
Samiul Haque ◽  
...  

Characterization of sixteen jute genotypes, from Corchorus olitorius L. and Corchorus capsularis L. using jute specific SSR marker attained a high polymorphism value of 92.20%. A total of 171 different alleles were amplified by 27 primer pairs with a mean of 6.33 ± 2.04 alleles per locus. The genetic diversity was also relatively high (0.81 ± 0.06). The Un-weighted Pair-group Method with Arithmetic averages (UPGMA) cluster analysis of the 16 jute genotypes produced a dendogram, which was in concordance with known information. The study reinforces the utility of SSR primers for providing useful and high levels of markers for individual plant genotypes even with a narrow genetic base. Key words: Jute; Genetic diversity; SSR; Genotypes; Polymorphism DOI: 10.3329/bjb.v38i2.5140 Bangladesh J. Bot. 38(2): 153-161, 2009 (December)  


2012 ◽  
Vol 92 (6) ◽  
pp. 1075-1081 ◽  
Author(s):  
Sajjad Ahmad ◽  
Manjit Singh ◽  
Neil Dylan Lamb-Palmer ◽  
Mark Lefsrud ◽  
Jaswinder Singh

Ahmad, S., Singh, M., Lamb-Palmer, N. D., Lefsrud, M. and Singh, J. 2012. Assessment of genetic diversity in 35 Pisum sativum accessions using microsatellite markers. Can. J. Plant Sci. 92: 1075–1081. Field pea is an important Canadian pulse crop and therefore developing high-performing cultivars is critical for Canadian pea growers. Information about genetic diversity is a key component for the creation of novel and desirable germplasm to develop elite pea breeding lines. The objective of the present study is to assess genetic diversity in 35 diverse Pisum accessions using 15 polymorphic microsatellites located on different pea chromosomes. Microsatellites were found to be polymorphic, amplifying a total of 41 alleles and were able to differentiate all 35 Pisum genotypes. These markers were scored by their polymorphic information content (PIC), ranging from 0.055 (AA206) to 0.660 (AB72) with an average of 0.460, and by their discriminating power (D), which varied from 0.057 (AA206) to 0.679 (AB 72) with an average of 0.475. Genetic similarity values ranged from 0.074 (between Maple pea NZ and Line 45760) to 0.875 (between Galena and Dakota) with an average of 0.336. Unweighted pair group method with arithmetic averages (UPGMA) cluster analysis grouped the 35 pea accessions into two major clusters and eight sub-clusters. The majority of Canadian and European genotypes were grouped separately, suggesting both these groups are from genetically distinct gene pools. The genetically diverse groups identified in this study can be used to derive parental lines for pea breeding.


Plant Disease ◽  
2007 ◽  
Vol 91 (12) ◽  
pp. 1556-1563 ◽  
Author(s):  
R. G. Bhat ◽  
G. T. Browne

California populations of the plant pathogen Phytophthora citricola were examined for amplified fragment length polymorphism (AFLP), pathogenicity on almond, and sensitivity to mefenoxam. The characterizations of AFLP variation and mefenoxam sensitivity were based on 86 isolates (44 from almond, 11 from avocado, 3 from strawberry, 18 from walnut, and 10 from six other hosts). Cluster analysis of the AFLP data using the unweighted pair group method indicated a high level of genetic diversity among the isolates, and four main clusters were identified—one dominated by isolates from almond, another including all isolates from avocado, and two including isolates from several hosts other than avocado. Analysis of molecular variance revealed that 38.4 and 24.9% of the AFLP variation were associated with host and geographical factors, respectively. Of 24 isolates, including those from almond, avocado, strawberry, and walnut, 22 were aggressive on almond shoots; there was no evidence of host specificity. All but 1 of the 86 isolates grew at different rates on V8 juice medium amended with mefenoxam at 1 ppm, indicating partial tolerance to the fungicide. Isolates of P. citricola from California populations are genetically diverse, and much of the variation is associated with host and geography. These populations are all potentially pathogenic on almond and tolerant to mefenoxam.


Genetika ◽  
2021 ◽  
Vol 53 (1) ◽  
pp. 363-378
Author(s):  
Juan Yin ◽  
Majid Khayatnezhad ◽  
Abdul Shakoor

Genetic diversity studies are essential to understand the conservation and management of plant resources in any environment. No detailed Random Amplified Polymorphic DNA (RAPD) studies were conducted to study Geranium genetic diversity. Therefore, we collected and analyzed thirteen species from nine provinces. Overall, one hundred and twenty-five plant specimens were collected. Our aims were 1) to assess genetic diversity among Geranium species 2) is there a correlation between species genetic and geographical distance? 3) Genetic structure of populations and taxa. We showed significant differences in quantitative morphological characters in plant species. Unweighted pair group method with arithmetic mean and multidimensional scaling divided Geranium species into two groups. G. sylvaticum depicted unbiased expected heterozygosity (UHe) in the range of 0.11. Shannon information was high (0.38) in G. columbinum. G. sylvaticum showed the lowest value, 0.14. The observed number of alleles (Na) ranged from 0.25 to 0.55 in G. persicum and G. tuberosum. The effective number of alleles (Ne) was in the range of 1.020-1.430 for G. tuberosum and G. collinum. Gene flow (Nm) was relatively low (0.33) in Geranium. The Mantel test showed correlation (r = 0.27, p=0.0002) between genetic and geographical distances. We reported high genetic diversity, which clearly shows the Geranium species can adapt to changing environments since high genetic diversity is linked to species adaptability. Present results highlighted the utility of RAPD markers and morphometry methods to investigate genetic diversity in Geranium species.


2018 ◽  
Vol 5 (2) ◽  
pp. 77
Author(s):  
Budi Martono ◽  
Syafaruddin Syafaruddin

<em>Knowing the genetic diversity in the tea germplasms collection is one of important conditions for assembling new superior varieties. Information of genetic diversity can be obtained through analysis using RAPD molecular markers. The study aimed to determine the genetic diversity of 21 tea genotypes based on RAPD markers. The research was conducted in Integrated Laboratory, Seameo Biotrop, Bogor, from July to September 2013. Genomic DNA was isolated from 21 tea genotypes leaf samples, then amplified with primer OPA 03, OPA 05, OPB 04, OPB 06, OPC 06, and OPD 08. Electrophoresis result was converted into binary data. The genetic similarity and cluster analysis calculation was done using NTSYS-pc version 2.10. In this research, 50 polymorphic bands (94,34%) and 3 monomorphic band (5,66%) were obtained. Cluster analysis based on Nei's genetic distance using the unweighted pair-group method with arithmatic (UPGMA) divided 21 tea genotypes into two groups at a genetic similarity value of 0,48. Group 1 consisted of 20 tea genotypes, while the second group comprised only a one genotype (Sin 27). The range of genetic similarity matrix was between 28%–92%, the lowest genetic similarity (28%) was found between GMB 4 and Sin 27 genotypes, while the highest (92%) was found between AS 2 and AS 1 genotypes. The information obtained can be utilized in breeding programs with the support of agronomic characters as well as in the conservation of tea germplasm.</em>


Sign in / Sign up

Export Citation Format

Share Document