eastern redbud
Recently Published Documents


TOTAL DOCUMENTS

43
(FIVE YEARS 5)

H-INDEX

8
(FIVE YEARS 1)

HortScience ◽  
2021 ◽  
pp. 1-3
Author(s):  
Hsuan Chen ◽  
Dennis J. Werner

Eastern redbud (Cercis canadensis L.) is a commonly used small landscape tree. Compact growth, purple leaf color, and weeping architecture are three popular ornamental phenotypes. Inheritances of weeping architecture and purple leaves have been reported previously. Inheritance of compact growth habit and its genetic linkage with the weeping and purple leaf genes have not been reported. In the present research, the inheritance of compact growth derived from ‘Ace of Hearts’ was explored in the F1, F2, and reciprocal backcross families resulting from the controlled hybridization of ‘Ruby Falls’ (normal growth/weeping architecture/purple leaf) × ‘Ace of Hearts’ (compact growth/nonweeping architecture/green leaf). All 27 F1 individuals were nonweeping, green-leaved, and noncompact. A total of 572 F2 progeny were obtained, and subsequent analysis of segregation revealed a single recessive gene controlled compact growth habit. Analysis of reciprocal backcross families confirmed this result as well. Weeping architecture and purple leaf color were also controlled by single recessive genes, confirming findings presented in previous studies in another redbud family. No linkage between the three genes was detected. This research is the first to report the inheritance of compact growth in eastern redbud and confirms independent assortment between the compact, purple leaf, and weeping genes.


2020 ◽  
Author(s):  
Noel Anthony Mano ◽  
Santiago Franco Lopez ◽  
Michael V. Mickelbart

Summary⍰ Modulation of stomatal development may be an acclimation response to low water availability. However, stomatal development plasticity has been assessed in very few species.⍰ We quantified leaf anatomy traits, including stomatal index (SI), density (SD), size (SS), and pore index (SPI), in response to water-deficit stress in river birch (Betula nigra L.), eastern redbud (Cercis canadensis L.), and silver maple (Acer saccharinum L.).⍰ Birch and redbud, but not maple, had reduced SPI in response to water deficit. The mechanism by which SPI reduction occurred (via SD or SS) varied among species and with severity of water stress. Despite reduced SPI in birch and redbud, anatomical changes were relatively small and had a minor to no effect on the theoretical maximum stomatal conductance. Furthermore, gas-exchange rates were equivalent to well-watered plants following media re-irrigation.⍰ In some tree species, stomatal development is downregulated in response to water deficit conditions. Stomatal development plasticity is facilitated by smaller or fewer stomata, depending upon the species and the intensity of the stress. Water-deficit-induced plasticity in stomatal development is species-specific, likely due to species adaptation to ecological niches.


2020 ◽  
Vol 10 (8) ◽  
pp. 3655-3670 ◽  
Author(s):  
Meher A. Ony ◽  
Marcin Nowicki ◽  
Sarah L. Boggess ◽  
William E. Klingeman ◽  
John M. Zobel ◽  
...  

Insects ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 8
Author(s):  
Christopher M. Ranger ◽  
Christopher T. Werle ◽  
Peter B. Schultz ◽  
Karla M. Addesso ◽  
Jason B. Oliver ◽  
...  

Ambrosia beetles (Coleoptera: Curculionidae: Scolytinae) are destructive wood-boring insects of horticultural trees. We evaluated long-lasting insecticide netting for protecting stems against ambrosia beetles. Container-grown eastern redbud, Cercis canadensis, trees were flood-stressed to induce ambrosia beetle attacks, and deltamethrin-treated netting was wrapped from the base of the stem vertically to the branch junction. Trees were deployed under field conditions in Ohio, Virginia, Tennessee, and Mississippi with the following treatments: (1) flooded tree; (2) flooded tree with untreated netting; (3) flooded tree with treated ‘standard mesh’ netting of 24 holes/cm2; (4) flooded tree with treated ‘fine mesh’ netting of 28 holes/cm2; and/or (5) non-flooded tree. Treated netting reduced attacks compared to untreated netting and/or unprotected trees in Mississippi in 2017, Ohio and Tennessee in 2018, and Virginia in 2017–2018. Inconsistent effects occurred in Mississippi in 2018. Fewer Anisandrus maiche, Xylosandrus germanus, and Xyleborinus saxesenii were dissected from trees deployed in Ohio protected with treated netting compared to untreated netting; trees deployed in other locations were not dissected. These results indicate long-lasting insecticide netting can provide some protection of trees from ambrosia beetle attacks.


2019 ◽  
Vol 34 (3) ◽  
pp. 331-341
Author(s):  
Brian R. Dintelmann ◽  
Michele R. Warmund ◽  
Mandy D. Bish ◽  
Kevin W. Bradley

AbstractAn experiment was conducted in 2017 and 2018 to determine the sensitivity of driftable rates of 2,4-D and dicamba with or without glyphosate on common ornamental, fruit, and nut species. Three driftable rates corresponding to ½, 1/20th, and 1/200th of the manufacturer’s labeled rate (1 × rate) of 2,4-D (1.09 kg ae ha−1), 2,4-D plus glyphosate (1.09 kg ae ha−1 plus 1.10 kg ae ha−1), dicamba (0.56 kg ae ha−1), and dicamba plus glyphosate (0.56 kg ae ha−1 plus 1.10 kg ae ha−1) were applied to apple, crabapple, dogwood, American elderberry, American elm, grapevine, hydrangea, red maple, pin oak, peach, pecan, eastern redbud, rose, red raspberry, strawberry, sweetgum, nannyberry viburnum, and black walnut plants. Visible estimates of injury were recorded 28 and 56 days after treatment (DAT). Plant measurements included leaf malformation, tree trunk growth, and shoot length. Across all species, the ½ × rate of 2,4-D plus glyphosate resulted in 61% injury 28 DAT, whereas the ½ × rate of dicamba plus glyphosate resulted in 51% injury. Across plant species and herbicides, ½ ×, 1/20 ×, and 1/200 × rates caused injury ranging from 3% to 100%, 0% to 66%, and 0% to 19%, respectively. Hydrangea was the least sensitive species; grapevine was most sensitive. Changes in plant measurements were dependent on the species and herbicide applied. Treatments at the ½ × or 1/20 × rate resulted in shoot length, leaf malformation, and trunk tree diameter differences for 11, 10, and 7 species, respectively, compared with nontreated plants. Collectively, the measurements and visual injury assessments indicated apple, red maple, peach, and pin oak were more sensitive to treatments containing dicamba, whereas black walnut, grapevine, and American elm were more sensitive to 2,4-D. Although the 1/200 × rates of 2,4-D and dicamba did not result in changes to plant measurements, obvious injury symptoms were observed, which could render these plants unsalable.


Insects ◽  
2018 ◽  
Vol 9 (3) ◽  
pp. 83 ◽  
Author(s):  
Karla Addesso ◽  
Fulya Baysal-Gurel ◽  
Jason Oliver ◽  
Christopher Ranger ◽  
Paul O’Neal

Flooding can increase tree susceptibility to root rot pathogens as well as attacks by ambrosia beetles attracted to stress-induced ethanol emissions. The objective of this study was to investigate the interaction of a preventative fungicide treatment and root infection with Phytophthora cinnamomi on ambrosia beetle attacks in flood stressed trees. A fungicide (Pageant® Intrinsic®) was evaluated in two flood trials using Eastern redbud and tulip poplar trees with treatments including the fungicide with or without pathogen or no fungicide with or without pathogen. Fungicide treated trees had fewer ambrosia beetle attacks, particularly in trees without P. cinnamomi co-infection. In a follow-up experiment, ethanol content was evaluated in flooded redbuds to determine if the fungicide treatment reduced stress-induced compounds. All flood stressed trees began producing ethanol within 24 h post flooding, regardless of fungicide treatment or P. cinnamomi infection. We conclude that pre-treatments of a fungicide can provide protection from ambrosia beetle attacks during an extreme flood event, but that protection is reduced if a root rot pathogen is also present. Additionally, rejection of fungicide treated trees was not related to the absence of ethanol, as the fungicide-treated plants released ethanol in quantities similar to non-treated trees.


HortScience ◽  
2017 ◽  
Vol 52 (4) ◽  
pp. 498-502 ◽  
Author(s):  
Chandra S. Thammina ◽  
David L. Kidwell-Slak ◽  
Stefan Lura ◽  
Margaret R. Pooler

The redbud (Cercis L. species) is a popular landscape plant grown widely in the United States. There are more than 20 cultivars of eastern redbud (Cercis canadensis L.) and at least three cultivars of Asian taxa (primarily Cercis chinensis Bunge) in the trade. The U.S. National Arboretum (USNA) has a diverse collection of Cercis germplasm collected in North America and Asia. Fourteen genomic simple sequence repeat (genomic-SSR) markers were used to analyze the genetic diversity of 53 accessions of Asian Cercis taxa from our collection, including C. chinensis, Cercis chingii Chun, Cercis gigantea ined., Cercis glabra Pamp., Cercis racemosa Oliv., and Cercis yunnanensis Hu and W. C. Cheng. SSR markers detected an average of 5.7 alleles per locus with a range of two to nine alleles. A dendrogram was generated by unweighted pair group method with arithmetic mean (UPGMA) cluster analysis using the Jaccard similarity coefficient. Four major clusters were identified. Accessions tended to group by taxa or provenance, but with some notable exceptions caused either by misidentification or nomenclatural confusion in the species. This information will be used for collection management and for making decisions in the breeding program to maximize genetic diversity of cultivated Cercis.


HortScience ◽  
2017 ◽  
Vol 52 (1) ◽  
pp. 94-98 ◽  
Author(s):  
Christopher T. Werle ◽  
Karla M. Addesso ◽  
Blair J. Sampson ◽  
Jason B. Oliver ◽  
John J. Adamczyk

Invasive ambrosia beetles (Coleoptera: Curculionidae) are an important pest problem at ornamental tree nurseries. Available chemical treatments are not completely effective and, due to the length of the beetle dispersal period and insecticide breakdown, repeated treatments can become costly in terms of application expense and nontarget impacts. Additional options are needed to reduce application frequency and to provide an acceptable level of crop protection. Four treatments were tested using ethanol-injected eastern redbud trees at research sites in Mississippi (MS) and Tennessee (TN) over 2 years (2014–15), with the number of new ambrosia beetle galleries compared over time on 1) nontreated control trees, 2) kaolin-treated trees, 3) bifenthrin-treated trees, and 4) kaolin + bifenthrin (k + b)-treated trees. Kaolin-treated trees rapidly lost their coating after rain events and, at 6 days after treatment (DAT) in TN, no differences were detected in the number of beetle galleries between kaolin and nontreated control trees. Kaolin + bifenthrin-treated trees appeared to retain treatment residue longer, but were not better-protected than bifenthrin-treated trees at any time. Further research is needed to determine whether an adjuvant, such as a surfactant, spreader, or sticker, may enhance the modest impact offered by kaolin in our test, or if a reduction in rates of bifenthrin may be allowable.


2015 ◽  
Vol 2 (1) ◽  
Author(s):  
David J Roberts ◽  
Dennis J Werner ◽  
Phillip A Wadl ◽  
Robert N Trigiano

Sign in / Sign up

Export Citation Format

Share Document