Mitotic and polytene chromosome analysis in the Mexican fruit fly, Anastrepha ludens (Loew) (Diptera: Tephritidae)

Genome ◽  
2009 ◽  
Vol 52 (1) ◽  
pp. 20-30 ◽  
Author(s):  
V. Garcia-Martinez ◽  
E. Hernandez-Ortiz ◽  
C. S. Zepeta-Cisneros ◽  
A. S. Robinson ◽  
A. Zacharopoulou ◽  
...  

The present study constitutes the first attempt to construct a polytene chromosome map of an Anastrepha species, Anastrepha ludens (Loew), a major agricultural pest. The mitotic karyotype has a diploid complement of 12 acrocentric chromosomes, including five pairs of autosomes and an XX/XY sex chromosome pair. The analysis of salivary gland polytene chromosomes has shown a total number of five polytene elements that correspond to the five autosomes. The characteristic features and the most prominent landmarks of each chromosome are described. By comparing chromosome banding patterns, the possible chromosomal homology between A. ludens and Ceratitis capitata (Wiedemann) is presented. This work shows that polytene maps of A. ludens are suitable for cytogenetic studies in this species and may be used as reference for other Anastrepha species, most of which are also serious agricultural pests.

Genome ◽  
1998 ◽  
Vol 41 (4) ◽  
pp. 510-526 ◽  
Author(s):  
J T Zhao ◽  
M Frommer ◽  
J A Sved ◽  
A Zacharopoulou

The Queensland fruit fly, Bactrocera tryoni, like the Mediterranean fruit fly, Ceratitis capitata, has a diploid complement of 12 chromosomes, including five pairs of autosomes and a XX/XY sex chromosome pair. Characteristic features of each chromosome are described. Chromosomal homology between B. tryoni and C. capitata has been determined by comparing chromosome banding pattern and in situ hybridisation of cloned genes to polytene chromosomes. Although the evidence indicates that a number of chromosomal inversions have occurred since the separation of the two species, synteny of the chromosomes appears to have been maintained.Key words: tephritid fruit fly, Bactrocera tryoni, polytene chromosomes, in situ hybridisation, chromosomal homology.


Genome ◽  
2002 ◽  
Vol 45 (6) ◽  
pp. 1167-1174 ◽  
Author(s):  
Reza M Shahjahan ◽  
Farzana Yesmin

Standard photographic maps of the polytene chromosomes are presented for the melon fly Bactrocera cucurbitae, a serious pest of fleshy fruits and vegetables. Five larval salivary gland polytene chromosomes (10 polytene arms) were isolated, and their characteristic features and landmarks have been recognized. Banding patterns of each of the polytene arms are presented, where variation in band intensity and puffs appear to reflect fundamental differences in chromosomes. The whole polytene genome has been typically mapped by dividing it into 100 sections and the subsections were lettered. The mitotic chromosomes of larval brain ganglia are also examined, five pairs of autosomes and an XX/XY sex chromosome pair. In addition, a heterochromatic mass corresponding to the sex chromosomes are observed in the polytene nuclei of salivary gland tissue. This investigation showed that B. cucurbitae has excellent cytological material for polytene chromosome analysis and proved to be very useful for obtaining more detailed genetic information on the pest's natural populations.Key words: Bactrocera cucurbitae, salivary gland, banding patterns, polytene maps.


1984 ◽  
Vol 26 (3) ◽  
pp. 318-325 ◽  
Author(s):  
D. G. Bedo

Polytene chromosome analysis of five Simulium neornatipes populations not only confirms the existence of the two sibling species, S. neornatipes 1 and 2, proposed earlier but reveals a third. S. neornatipes 3. These sibling species share a common standard polytene chromosome banding sequence which differs from the Australian S. ornatipes complex standard by five fixed inversions. The sharing of polymorphic inversions between the ornatipes and neornatipes complexes indicates their close relationship. The neornatipes species are distinguished from each other by additional fixed inversions and differentiated sex chromosomes. Extensive sex chromosome differentiation involving chromosome III has occurred in S. neornatipes 1 and 2. A period of incomplete sex-linkage allowing reassortment of inversions must have preceded the currently observed strong sex-linkage of differentiated sex chromosomes to account for the complex array of sex chromosomes found. The close association of sex chromosome differentiation with speciation in black flies is discussed in relation to appropriate speciation mechanisms. It is concluded that the rearrangements themselves have no direct role in the speciation process.Key words: sibling species, sex chromosomes, Simuliidae.


Genome ◽  
1992 ◽  
Vol 35 (3) ◽  
pp. 373-378 ◽  
Author(s):  
P. Mavragani-Tsipidou ◽  
G. Karamanlidou ◽  
A. Zacharopoulou ◽  
S. Koliais ◽  
C. Kastritsis

The present study constitutes the first attempt to construct a photographic map of the polytene chromosomes of Dacus oleae, a pest of the olive tree that causes serious financial damage in all olive oil producing countries. The map was constructed by using the larval fat body cells, the chromosomes of which are representative of the polytene chromosomes of other polytene tissues. In addition, the mitotic chromosomes of brain ganglia were examined, permitting tentative correlations between mitotic and polytene elements. This investigation shows that D. oleae is suitable for cytogenetic analysis in both mitotic and polytene chromosomes, a fact that may prove very useful for obtaining more detailed genetic information on the pest's natural populations.Key words: Dacus oleae, polytene chromosomes, mitotic chromosomes.


Genome ◽  
1987 ◽  
Vol 29 (4) ◽  
pp. 598-611 ◽  
Author(s):  
D. G. Bedo

Polytene chromosome reference maps of the five autosomes of Ceratitis capitata from male pupal orbital bristle trichogen cells are presented and a correlation is established between two of them and the two largest of the five autosomes in the haploid mitotic complement. Characteristic features of each chromosome are described identifying areas that are difficult to analyze and noting the existence of common alternative band expression. A quantitative analysis of the mitotic karyotype of C. capitata indicates that the two smallest autosome pairs cannot be reliably distinguished. This may present problems with future attempts to establish homologies between the remaining mitotic and polytene chromosomes. A comparison of polytene chromosome banding patterns from salivary gland and trichogen cells failed to find any homologous regions, or even to identify homologous chromosomes. The banding differences are not explained by variation in puffing patterns, heterochromatin expression, or polyteny levels, but appear to reflect fundamental differences in banding patterns of the chromosomes in each tissue. Key words: Ceratitis capitata, polytene chromosome map, mitotic chromosome measurements.


Reproduction ◽  
2003 ◽  
pp. 279-297 ◽  
Author(s):  
MA Hulten ◽  
S Dhanjal ◽  
B Pertl

Molecular techniques have been developed for prenatal diagnosis of the most common chromosome disorders (trisomies 21, 13, 18 and sex chromosome aneuploidies) where results are available within a day or two. This involves fluorescence in situ hybridization (FISH) and microscopy analysis of fetal cells or quantitative fluorescence polymerase chain reaction (QF-PCR) on fetal DNA. Guidance is provided on the technological pitfalls in setting up and running these methods. Both methods are reliable, and the risk for misdiagnosis is low, although slightly higher for FISH. FISH is also more labour intensive than QF-PCR, the latter lending itself more easily to automation. These tests have been used as a preamble to full chromosome analysis by microscopy. However, there is a trend to apply the tests as 'stand-alone' tests for women who are at relatively low risk of having a baby with a chromosome disorder, in particular that associated with advanced age or results of maternal serum screening programmes. These women comprise the majority of those currently offered prenatal diagnosis with respect to fetal chromosome disorders and if introduced on a larger scale, the use of FISH and QF-PCR would lead to substantial economical savings. The implication, on the other hand, is that around one in 500 to one in 1000 cases with a mentally and/or physically disabling chromosome disorder would remain undiagnosed.


1986 ◽  
Vol 28 (2) ◽  
pp. 180-188 ◽  
Author(s):  
D. G. Bedo

Polytene chromosomes were found in several larval and pupal tissues of the Medfly, Ceratitis capitata, during a search for chromosomes suitable for detailed cytological analysis. Well-banded highly polytene chromosomes, which could be adequately separated and spread, were found in trichogen cells of the spatulate superior orbital bristles of male pupae. These chromosomes proved suitable for full polytene analysis. Thoracic trichogen cells of both male and female pupae also contain useful polytene chromosomes, although they are considerably thinner and thus more difficult to analyze. Contrasting with those in pupal trichogen cells, the chromosomes in the salivary glands, Malphighian tubules, midgut, hindgut, and fat body of larvae and pupae were difficult to prepare because of high levels of ectopic pairing and chromosome fragmentation. In hindgut preparations partial separation of up to three chromosomes was achieved, but in all other tissues no useful chromosome separation was possible. In trichogen polytene cells, five banded chromosomes and a prominent heterochromatic network associated with a nucleolus are found. The mitotic chromosomes respond to C- and Q-banding and silver staining with considerable variation. This is especially so in the X chromosome, which displays an extensive array of bands following both Q-banding and silver staining. Comparison of Q-banded metaphase and polytene chromosomes demonstrates that the five autosomes are represented by conventional polytene chromosomes, while the sex chromosomes are contained in the heterochromatic net, most of which fluoresces strongly. This suggests that the Q-bands of the mitotic X chromosome are replicated to a greater extent than the nonfluorescent material in polytene cells. This investigation shows C. capitata to have excellent cytological material for both polytene and mitotic analysis.Key words: Ceratitis capitata, Medfly, chromosomes (polytene), banding (chromosome).


Genome ◽  
2008 ◽  
Vol 51 (7) ◽  
pp. 479-491 ◽  
Author(s):  
Ilias Kounatidis ◽  
Nikolaos Papadopoulos ◽  
Kostas Bourtzis ◽  
Penelope Mavragani-Tsipidou

The European cherry fruit fly, Rhagoletis cerasi , is a major agricultural pest for which biological, genetic, and cytogenetic information is limited. We report here a cytogenetic analysis of 4 natural Greek populations of R. cerasi, all of them infected with the endosymbiotic bacterium Wolbachia pipientis . The mitotic karyotype and detailed photographic maps of the salivary gland polytene chromosomes of this pest species are presented here. The mitotic metaphase complement consists of 6 pairs of chromosomes, including one pair of heteromorphic sex chromosomes, with the male being the heterogametic sex. The analysis of the salivary gland polytene complement has shown a total of 5 long chromosomes (10 polytene arms) that correspond to the 5 autosomes of the mitotic nuclei and a heterochromatic mass corresponding to the sex chromosomes. The most prominent landmarks of each polytene chromosome, the “weak points”, and the unusual asynapsis of homologous pairs of polytene chromosomes at certain regions of the polytene elements are also presented and discussed.


EDIS ◽  
1969 ◽  
Vol 2004 (5) ◽  
Author(s):  
Howard V. Weems, Jr. ◽  
John B. Heppner ◽  
Thomas R. Fasulo ◽  
James L. Nation

The Caribbean fruit fly, Anastrepha suspensa (Loew), has also been called the Greater Antilliean fruit fly, the guava fruit fly and the Caribfly. It is a near relative of the Mexican fruit fly, Anastrepha ludens (Loew), and is one of several species of fruit flies which are indigenous to the West Indies and the larvae of which attack several kinds of tropical and subtropical fruits. This document is EENY-196 (originally published as DPI Entomology Circulars 38 and 260), one of a series of Featured Creatures from the Entomology and Nematology Department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. Published: March 2001. EENY196/IN353: Caribbean Fruit Fly, Anastrepha suspensa (Loew) (Insecta: Diptera: Tephritidae) (ufl.edu)


Sign in / Sign up

Export Citation Format

Share Document