Comparison off genetic distance and order off DNA markers in five populations of rice

Genome ◽  
1996 ◽  
Vol 39 (5) ◽  
pp. 946-956 ◽  
Author(s):  
B. A. Antonio ◽  
T. Inoue ◽  
H. Kajiya ◽  
Y. Nagamura ◽  
N. Kurata ◽  
...  

A group of about 300 evenly distributed DNA markers from a high density RFLP linkage map of rice constructed using an F2 population derived from a japonica variety, Nipponbare, and an indica variety, Kasalath, were used to evaluate gene order and genetic distance in four other rice mapping populations. The purpose of this study was to determine the degree to which information gained from the high density linkage map could be applied to other mapping populations, particularly with regard to its utility in bridging quantitative traits and molecular and physical mapping information. The mapping populations consisted of two F2 populations derived from Dao Ren Qiao/Fl-1084 and Kinandangputi/Fl-1007, recombinant inbred lines from Asominori/IR24, and a backcross population from Sasanishiki/Habataki//Sasanishiki. All DNA markers commonly mapped in the four populations showed the same linkage groups as in the Nipponbare/Kasalath linkage map with conserved linkage order. The genetic distance between markers among the different populations did not vary to a significant level in any of the 12 chromosomes. The differences in some markers could be attributed to the size of the population used in the construction of the linkage maps. Furthermore, the conservation of linkage order found in the distal region of chromosomes 11 and 12 was also confirmed in the RFLP maps based on the four populations of rice. These suggest that any major genetic information from the Nipponbare/Kasalath map can be expected to be approximately the same in other crosses or populations. This high density RFLP linkage map, which is being utilized in constructing a physical map of rice, can be very useful in interpreting genome structure with great accuracy in other populations. Key words : linkage map, japonica, indica, gene order, genetic distance.

Genome ◽  
2001 ◽  
Vol 44 (1) ◽  
pp. 32-37 ◽  
Author(s):  
Shoko Saji ◽  
Yosuke Umehara ◽  
Baltazar A Antonio ◽  
Hiroko Yamane ◽  
Hiroshi Tanoue ◽  
...  

A new YAC (yeast artificial chromosome) physical map of the 12 rice chromosomes was constructed utilizing the latest molecular linkage map. The 1439 DNA markers on the rice genetic map selected a total of 1892 YACs from a YAC library. A total of 675 distinct YACs were assigned to specific chromosomal locations. In all chromosomes, 297 YAC contigs and 142 YAC islands were formed. The total physical length of these contigs and islands was estimated to 270 Mb which corresponds to approximately 63% of the entire rice genome (430 Mb). Because the physical length of each YAC contig has been measured, we could then estimate the physical distance between genetic markers more precisely than previously. In the course of constructing the new physical map, the DNA markers mapped at 0.0-cM intervals were ordered accurately and the presence of potentially duplicated regions among the chromosomes was detected. The physical map combined with the genetic map will form the basis for elucidation of the rice genome structure, map-based cloning of agronomically important genes, and genome sequencing.Key words: physical mapping, YAC contig, rice genome, rice chromosomes.


2018 ◽  
Vol 5 (5) ◽  
pp. 172054 ◽  
Author(s):  
Mimi Xie ◽  
Yao Ming ◽  
Feng Shao ◽  
Jianbo Jian ◽  
Yaoguang Zhang ◽  
...  

Single-nucleotide polymorphism (SNP) markers and high-density genetic maps are important resources for marker-assisted selection, mapping of quantitative trait loci (QTLs) and genome structure analysis. Although linkage maps in certain catfish species have been obtained, high-density maps remain unavailable in the economically important southern catfish ( Silurus meridionalis ). Recently developed restriction site-associated DNA (RAD) markers have proved to be a promising tool for SNP detection and genetic map construction. The objective of the present study was to construct a high-density linkage map using SNPs generated by next-generation RAD sequencing in S. meridionalis for future genetic and genomic studies. An F1 population of 100 individuals was obtained by intraspecific crossing of two wild heterozygous individuals. In total, 77 634 putative high-quality bi-allelic SNPs between the parents were discovered by mapping the parents' paired-end RAD reads onto the reference contigs from both parents, of which 54.7% were transitions and 45.3% were transversions (transition/transversion ratio of 1.2). Finally, 26 714 high-quality RAD markers were grouped into 29 linkage groups by using de novo clustering methods (Stacks). Among these markers, 4514 were linked to the female genetic map, 23 718 to the male map and 6715 effective loci were linked to the integrated map spanning 5918.31 centimorgans (cM), with an average marker interval of 0.89 cM. High-resolution genetic maps are a useful tool for both marker-assisted breeding and various genome investigations in catfish, such as sequence assembly, gene localization, QTL detection and genome structure comparison. Hence, such a high-density linkage map will serve as a valuable resource for comparative genomics and fine-scale QTL mapping in catfish species.


Genes ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 604
Author(s):  
Paolo Vitale ◽  
Fabio Fania ◽  
Salvatore Esposito ◽  
Ivano Pecorella ◽  
Nicola Pecchioni ◽  
...  

Traits such as plant height (PH), juvenile growth habit (GH), heading date (HD), and tiller number are important for both increasing yield potential and improving crop adaptation to climate change. In the present study, these traits were investigated by using the same bi-parental population at early (F2 and F2-derived F3 families) and late (F6 and F7, recombinant inbred lines, RILs) generations to detect quantitative trait loci (QTLs) and search for candidate genes. A total of 176 and 178 lines were genotyped by the wheat Illumina 25K Infinium SNP array. The two genetic maps spanned 2486.97 cM and 3732.84 cM in length, for the F2 and RILs, respectively. QTLs explaining the highest phenotypic variation were found on chromosomes 2B, 2D, 5A, and 7D for HD and GH, whereas those for PH were found on chromosomes 4B and 4D. Several QTL detected in the early generations (i.e., PH and tiller number) were not detected in the late generations as they were due to dominance effects. Some of the identified QTLs co-mapped to well-known adaptive genes (i.e., Ppd-1, Vrn-1, and Rht-1). Other putative candidate genes were identified for each trait, of which PINE1 and PIF4 may be considered new for GH and TTN in wheat. The use of a large F2 mapping population combined with NGS-based genotyping techniques could improve map resolution and allow closer QTL tagging.


2021 ◽  
Vol 22 (11) ◽  
pp. 5723
Author(s):  
Yuan-Yuan Xu ◽  
Sheng-Rui Liu ◽  
Zhi-Meng Gan ◽  
Ren-Fang Zeng ◽  
Jin-Zhi Zhang ◽  
...  

A high-density genetic linkage map is essential for genetic and genomic studies including QTL mapping, genome assembly, and comparative genomic analysis. Here, we constructed a citrus high-density linkage map using SSR and SNP markers, which are evenly distributed across the citrus genome. The integrated linkage map contains 4163 markers with an average distance of 1.12 cM. The female and male linkage maps contain 1478 and 2976 markers with genetic lengths of 1093.90 cM and 1227.03 cM, respectively. Meanwhile, a genetic map comparison demonstrates that the linear order of common markers is highly conserved between the clementine mandarin and Poncirus trifoliata. Based on this high-density integrated citrus genetic map and two years of deciduous phenotypic data, two loci conferring leaf abscission phenotypic variation were detected on scaffold 1 (including 36 genes) and scaffold 8 (including 107 genes) using association analysis. Moreover, the expression patterns of 30 candidate genes were investigated under cold stress conditions because cold temperature is closely linked with the deciduous trait. The developed high-density genetic map will facilitate QTL mapping and genomic studies, and the localization of the leaf abscission deciduous trait will be valuable for understanding the mechanism of this deciduous trait and citrus breeding.


Genetics ◽  
1996 ◽  
Vol 142 (2) ◽  
pp. 537-548 ◽  
Author(s):  
Michael W Nachman ◽  
Gary A Churchill

Abstract If loci are randomly distributed on a physical map, the density of markers on a genetic map will be inversely proportional to recombination rate. First proposed by MARY LYON, we have used this idea to estimate recombination rates from the Drosophila melanogaster linkage map. These results were compared with results of two other studies that estimated regional recombination rates in D. melanogaster using both physical and genetic maps. The three methods were largely concordant in identifying large-scale genomic patterns of recombination. The marker density method was then applied to the Mus musculus microsatellite linkage map. The distribution of microsatellites provided evidence for heterogeneity in recombination rates. Centromeric regions for several mouse chromosomes had significantly greater numbers of markers than expected, suggesting that recombination rates were lower in these regions. In contrast, most telomeric regions contained significantly fewer markers than expected. This indicates that recombination rates are elevated at the telomeres of many mouse chromosomes and is consistent with a comparison of the genetic and cytogenetic maps in these regions. The density of markers on a genetic map may provide a generally useful way to estimate regional recombination rates in species for which genetic, but not physical, maps are available.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Molla F. Mengist ◽  
Hamed Bostan ◽  
Elisheba Young ◽  
Kristine L. Kay ◽  
Nicholas Gillitt ◽  
...  

AbstractFruit quality traits play a significant role in consumer preferences and consumption in blueberry (Vaccinium corymbosum L). The objectives of this study were to construct a high-density linkage map and to identify the underlying genetic basis of fruit quality traits in blueberry. A total of 287 F1 individuals derived from a cross between two southern highbush blueberry cultivars, ‘Reveille’ and ‘Arlen’, were phenotyped over three years (2016–2018) for fruit quality-related traits, including titratable acidity, pH, total soluble solids, and fruit weight. A high-density linkage map was constructed using 17k single nucleotide polymorphisms markers. The linkage map spanned a total of 1397 cM with an average inter-loci distance of 0.08 cM. The quantitative trait loci interval mapping based on the hidden Markov model identified 18 loci for fruit quality traits, including seven loci for fruit weight, three loci for titratable acidity, five loci for pH, and three loci for total soluble solids. Ten of these loci were detected in more than one year. These loci explained phenotypic variance ranging from 7 to 28% for titratable acidity and total soluble solid, and 8–13% for pH. However, the loci identified for fruit weight did not explain more than 10% of the phenotypic variance. We also reported the association between fruit quality traits and metabolites detected by Proton nuclear magnetic resonance analysis directly responsible for these fruit quality traits. Organic acids, citric acid, and quinic acid were significantly (P < 0.05) and positively correlated with titratable acidity. Sugar molecules showed a strong and positive correlation with total soluble solids. Overall, the study dissected the genetic basis of fruit quality traits and established an association between these fruit quality traits and metabolites.


2007 ◽  
Vol 58 (6) ◽  
pp. 470 ◽  
Author(s):  
P. Moolhuijzen ◽  
D. S. Dunn ◽  
M. Bellgard ◽  
M. Carter ◽  
J. Jia ◽  
...  

Genome sequencing and the associated bioinformatics is now a widely accepted research tool for accelerating genetic research and the analysis of genome structure and function of wheat because it leverages similar work from other crops and plants. The International Wheat Genome Sequencing Consortium addresses the challenge of wheat genome structure and function and builds on the research efforts of Professor Bob McIntosh in the genetics of wheat. Currently, expressed sequence tags (ESTs; ~500 000 to date) are the largest sequence resource for wheat genome analyses. It is estimated that the gene coverage of the wheat EST collection is ~60%, close to that of Arabidopsis, indicating that ~40% of wheat genes are not represented in EST collections. The physical map of the D-genome donor species Aegilops tauschii is under construction (http://wheat.pw.usda.gov/PhysicalMapping). The technologies developed in this analysis of the D genome provide a good model for the approach to the entire wheat genome, namely compiling BAC contigs, assigning these BAC contigs to addresses in a high resolution genetic map, filling in gaps to obtain the entire physical length of a chromosome, and then large-scale sequencing.


Sign in / Sign up

Export Citation Format

Share Document