Rediscovery and further characterization of the aeroplane (ae) wing posture mutation in Drosophila melanogaster

Genome ◽  
1999 ◽  
Vol 42 (3) ◽  
pp. 403-411 ◽  
Author(s):  
Kelly H Soanes ◽  
John B Bell

In 1931, Theodore Quelprud characterized a novel spontaneous mutation in Drosophila melanogaster, which was named aeroplane (ae) based on its abnormal wing posture. Although the characterization of the original ae locus was minimal, it is very likely that another allele of this extinct mutation has now been identified. aeroplane-like (ae-l) was isolated as a by-product of a transformation experiment. The apparent wing paralysis is not caused by any obvious abnormalities in the thorax, wing, indirect flight muscles or direct flight muscles. Classical genetic complementation analyses of ae-l with other genes in the region suggest that it represents an allele of a novel locus. Unexpectedly, a molecular examination revealed that the physical lesion identified in the ae-l mutant is exceptionally close to the homeotic gene teashirt (tsh) and, indeed, may represent an unusual allele of teashirt.Key words: aeroplane, teashirt, wing posture, Drosophila, flight.

1989 ◽  
Vol 109 (5) ◽  
pp. 2157-2167 ◽  
Author(s):  
J D Saide ◽  
S Chin-Bow ◽  
J Hogan-Sheldon ◽  
L Busquets-Turner ◽  
J O Vigoreaux ◽  
...  

Twelve monoclonal antibodies have been raised against proteins in preparations of Z-disks isolated from Drosophila melanogaster flight muscle. The monoclonal antibodies that recognized Z-band components were identified by immunofluorescence microscopy of flight muscle myofibrils. These antibodies have identified three Z-disk antigens on immunoblots of myofibrillar proteins. Monoclonal antibodies alpha:1-4 recognize a 90-100-kD protein which we identify as alpha-actinin on the basis of cross-reactivity with antibodies raised against honeybee and vertebrate alpha-actinins. Monoclonal antibodies P:1-4 bind to the high molecular mass protein, projectin, a component of connecting filaments that link the ends of thick filaments to the Z-band in insect asynchronous flight muscles. The anti-projectin antibodies also stain synchronous muscle, but, surprisingly, the epitopes here are within the A-bands, not between the A- and Z-bands, as in flight muscle. Monoclonal antibodies Z(210):1-4 recognize a 210-kD protein that has not been previously shown to be a Z-band structural component. A fourth antigen, resolved as a doublet (approximately 400/600 kD) on immunoblots of Drosophila fibrillar proteins, is detected by a cross reacting antibody, Z(400):2, raised against a protein in isolated honeybee Z-disks. On Lowicryl sections of asynchronous flight muscle, indirect immunogold staining has localized alpha-actinin and the 210-kD protein throughout the matrix of the Z-band, projectin between the Z- and A-bands, and the 400/600-kD components at the I-band/Z-band junction. Drosophila alpha-actinin, projectin, and the 400/600-kD components share some antigenic determinants with corresponding honeybee proteins, but no honeybee protein interacts with any of the Z(210) antibodies.


1983 ◽  
Vol 105 (1) ◽  
pp. 231-239 ◽  
Author(s):  
DAVID G. KING ◽  
MARK A. TANOUYE

The direct flight muscles of Drosophila melanogaster are innervated by the anterior dorsal mesothoracic (ADM) nerve and the mesothoracic accessory (MAC) nerve. Each of the four conspicuously large axons in the ADM nerve serves one of the muscles designated pal, pa3, pa4 and pa5. Muscle pa4 is additionally innervated by a very small neurosecretory axon. Muscle pa6, also innervated by the ADM nerve, receives at least one small nerve fibre but no large axon. Muscle pa2 is innervated by a large axon from the MAC nerve. Large motor axons, identified by serial section tracing from their respective muscles, are consistent among different individuals in both relative positions and relative diameters within the ADM nerve.


Genetics ◽  
1979 ◽  
Vol 93 (1) ◽  
pp. 143-161
Author(s):  
John M Rawls ◽  
Lawrence A Porter

ABSTRACT New rudimentary (r) mutants have been isolated following mutagenesis with ethyl methanesulfonate (rLE), ICR-170 (rLI) and X rays (rLX) . From wing phenotype measurements on hamoallelic females, it has been shown that the rLE mutant series includes several leaky alleles, as well as alleles that produce moderate and strong r phenotypes. All of the tested rLI alleles yielded strong r phenotypes in homoallelic females, whereas the rLX series was found to include both moderate and strong alleles. Based on allele complementation for the wing phenotype, it was found that all three mutant series include both complementing and noncomplementing alleles, but the relative frequencies of these two types of alleles differ considerably among the three series. Complementing alleles comprise most of the rLE mutant series (19 of 25) and almost one-half of the rLX series (five of 12), while only one of 16 rLI mutants is a complementing allele. Data from enzyme assays of mutants mostly support the direct correlation of genetic complementation units with the activities of the first three enzymes in the de novo pyrimidine biosynthetic pathway. All of these findings are discussed in light of evidence that these three enzymes are contained within a tri-enzyme complex in animals. We conclude that the available genetic evidence supports the contention that the trienzyme complex is encoded by a single mRNA.


1998 ◽  
Vol 201 (13) ◽  
pp. 2033-2044 ◽  
Author(s):  
J O Vigoreaux ◽  
C Hernandez ◽  
J Moore ◽  
G Ayer ◽  
D Maughan

We have developed a reverse-genetic approach to study the function of flightin, a unique protein of the flight muscle myofibril of Drosophila melanogaster. We describe the generation and characterization of Df(3L)fln1, a lethal genetic deficiency in the 76BE region of the third chromosome which deletes several genes, including the gene for flightin. We show that heterozygous flies harboring the Df(3L)fln1 mutation exhibit both impaired flight and ultrastructural defects in their flight muscle myofibrils. We found that the mutation does not interfere with assembly of the myofibril but leads to disorganization of peripheral myofilaments in adult myofibrils. Most myofibrils, nevertheless, retain an intact core that represents approximately 80 % of the normal lattice diameter. Mechanical analysis of single skinned flight muscle fibers demonstrates that the mutation has no significant effect on net power output but increases the frequency at which maximum power is delivered to the wings, potentially reducing the overall performance of the flight system. The results suggest that flightin is an indispensable part of the flight muscle contractile mechanism.


Author(s):  
Celia K S Lau ◽  
Meghan Jelen ◽  
Michael D Gordon

Abstract Feeding is an essential part of animal life that is greatly impacted by the sense of taste. Although the characterization of taste-detection at the periphery has been extensive, higher order taste and feeding circuits are still being elucidated. Here, we use an automated closed-loop optogenetic activation screen to detect novel taste and feeding neurons in Drosophila melanogaster. Out of 122 Janelia FlyLight Project GAL4 lines preselected based on expression pattern, we identify six lines that acutely promote feeding and 35 lines that inhibit it. As proof of principle, we follow up on R70C07-GAL4, which labels neurons that strongly inhibit feeding. Using split-GAL4 lines to isolate subsets of the R70C07-GAL4 population, we find both appetitive and aversive neurons. Furthermore, we show that R70C07-GAL4 labels putative second-order taste interneurons that contact both sweet and bitter sensory neurons. These results serve as a resource for further functional dissection of fly feeding circuits.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2543
Author(s):  
Ruidong Ni ◽  
Suzeeta Bhandari ◽  
Perry R. Mitchell ◽  
Gabriela Suarez ◽  
Neel B. Patel ◽  
...  

Fatty acid amides are a diverse family of underappreciated, biologically occurring lipids. Herein, the methods for the chemical synthesis and subsequent characterization of specific members of the fatty acid amide family are described. The synthetically prepared fatty acid amides and those obtained commercially are used as standards for the characterization and quantification of the fatty acid amides produced by biological systems, a fatty acid amidome. The fatty acid amidomes from mouse N18TG2 cells, sheep choroid plexus cells, Drosophila melanogaster, Bombyx mori, Apis mellifera, and Tribolium castaneum are presented.


Genetics ◽  
2001 ◽  
Vol 157 (3) ◽  
pp. 1257-1265 ◽  
Author(s):  
Hsiao-Pei Yang ◽  
Ana Y Tanikawa ◽  
Wayne A Van Voorhies ◽  
Joana C Silva ◽  
Alexey S Kondrashov

Abstract We induced mutations in Drosophila melanogaster males by treating them with 21.2 mm ethyl methanesulfonate (EMS). Nine quantitative traits (developmental time, viability, fecundity, longevity, metabolic rate, motility, body weight, and abdominal and sternopleural bristle numbers) were measured in outbred heterozygous F3 (viability) or F2 (all other traits) offspring from the treated males. The mean values of the first four traits, which are all directly related to the life history, were substantially affected by EMS mutagenesis: the developmental time increased while viability, fecundity, and longevity declined. In contrast, the mean values of the other five traits were not significantly affected. Rates of recessive X-linked lethals and of recessive mutations at several loci affecting eye color imply that our EMS treatment was equivalent to ∼100 generations of spontaneous mutation. If so, our data imply that one generation of spontaneous mutation increases the developmental time by 0.09% at 20° and by 0.04% at 25°, and reduces viability under harsh conditions, fecundity, and longevity by 1.35, 0.21, and 0.08%, respectively. Comparison of flies with none, one, and two grandfathers (or greatgrandfathers, in the case of viability) treated with EMS did not reveal any significant epistasis among the induced mutations.


Genetics ◽  
2002 ◽  
Vol 161 (2) ◽  
pp. 733-746
Author(s):  
Jeffrey W Southworth ◽  
James A Kennison

Abstract The Sex combs reduced (Scr) gene specifies the identities of the labial and first thoracic segments in Drosophila melanogaster. In imaginal cells, some Scr mutations allow cis-regulatory elements on one chromosome to stimulate expression of the promoter on the homolog, a phenomenon that was named transvection by Ed Lewis in 1954. Transvection at the Scr gene is blocked by rearrangements that disrupt pairing, but is zeste independent. Silencing of the Scr gene in the second and third thoracic segments, which requires the Polycomb group proteins, is disrupted by most chromosomal aberrations within the Scr gene. Some chromosomal aberrations completely derepress Scr even in the presence of normal levels of all Polycomb group proteins. On the basis of the pattern of chromosomal aberrations that disrupt Scr gene silencing, we propose a model in which two cis-regulatory elements interact to stabilize silencing of any promoter or cis-regulatory element physically between them. This model also explains the anomalous behavior of the Scx allele of the flanking homeotic gene, Antennapedia. This allele, which is associated with an insertion near the Antennapedia P1 promoter, inactivates the Antennapedia P1 and P2 promoters in cis and derepresses the Scr promoters both in cis and on the homologous chromosome.


Genetics ◽  
1999 ◽  
Vol 151 (2) ◽  
pp. 749-760 ◽  
Author(s):  
Armin Schmidt ◽  
Gioacchino Palumbo ◽  
Maria P Bozzetti ◽  
Patrizia Tritto ◽  
Sergio Pimpinelli ◽  
...  

Abstract The sting mutation, caused by a P element inserted into polytene region 32D, was isolated by a screen for male sterile insertions in Drosophila melanogaster. This sterility is correlated with the presence of crystals in spermatocytes and spermatids that are structurally indistinguishable from those produced in males carrying a deficiency of the Y-linked crystal (cry) locus. In addition, their morphology is needle-like in Ste+ flies and star-shaped in Ste flies, once again as observed in cry– males. The sti mutation leads to meiotic drive of the sex chromosomes, and the strength of the phenomenon is correlated with the copy number of the repetitive Ste locus. The same correlation is also true for the penetrance of the male sterile mutation. A presumptive sti null allele results in male sterility and lethal maternal effect. The gene was cloned and shown to code for a putative protein that is 866 amino acids long. A C-terminal domain of 82 amino acids is identified that is well conserved in proteins from different organisms. The gene is expressed only in the germline of both sexes. The interaction of sting with the Ste locus can also be demonstrated at the molecular level. While an unprocessed 8-kb Ste primary transcript is expressed in wild-type males, in X/Y homozygous sti males, as in X/Y cry– males, a 0.7-kb mRNA is produced.


Sign in / Sign up

Export Citation Format

Share Document