U1 snDNA chromosomal mapping in ten spittlebug species (Cercopidade, Auchenorrhyncha, Hemiptera)

Genome ◽  
2018 ◽  
Vol 61 (1) ◽  
pp. 59-62 ◽  
Author(s):  
Allison Anjos ◽  
Andressa Paladini ◽  
Tatiane C. Mariguela ◽  
Diogo C. Cabral-de-Mello

Spittlebugs, which belong to the family Cercopidae (Auchenorrhyncha, Hemiptera), form a large group of xylem-feeding insects that are best known for causing damage to plantations and pasture grasses. The holocentric chromosomes of these insects remain poorly studied in regards to the organization of different classes of repetitive DNA. To improve chromosomal maps based on repetitive DNAs and to better understand the chromosomal organization and evolutionary dynamics of multigene families in spittlebugs, we physically mapped the U1 snRNA gene with fluorescence in situ hybridization (FISH) in 10 species of Cercopidae belonging to three different genera. All the U1 snDNA clusters were autosomal and located in interstitial position. In seven species, they were restricted to one autosome per haploid genome, while three species of the genus Mahanarva showed two clusters in two different autosomes. Although it was not possible to precisely define the ancestral location of this gene, it was possible to observe the presence of at least one cluster located in a small bivalent in all karyotypes. The karyotype stability observed in Cercopidae is also observed in respect to the distribution of U1 snDNA. Our data are discussed in light of possible mechanisms for U1 snDNA conservation and compared with the available data from other species.

2020 ◽  
Vol 131 (3) ◽  
pp. 547-565 ◽  
Author(s):  
František Šťáhlavský ◽  
Petr Nguyen ◽  
David Sadílek ◽  
Jana Štundlová ◽  
Pavel Just ◽  
...  

Abstract We examined the distribution of genes for major ribosomal RNAs (rDNA) on holokinetic chromosomes of 74 species belonging to 19 genera of scorpions from the family Buthidae using fluorescence in situ hybridization (FISH). Our analysis revealed differences between the two main evolutionary lineages within the family. The genera belonging to the ‘Buthus group’, with a proposed Laurasian origin, possess one pair of rDNA mainly in an interstitial position, with the only exceptions being the terminal location found in some Hottentotta and Buthacus species, possibly as a result of chromosome fissions. All the remaining buthid ‘groups’ possess rDNA found strictly in a terminal position. However, the number of signals may increase from an ancestral state of one pair of rDNA loci to up to seven signals in Reddyanus ceylonensis Kovařík et al., 2016. Despite the differences in evolutionary dynamics of the rDNA clusters between the ‘Buthus group’ and other lineages investigated, we found a high incidence of reciprocal translocations and presence of multivalent associations during meiosis in the majority of the genera studied. These phenomena seem to be typical for the whole family Buthidae.


Genes ◽  
2018 ◽  
Vol 9 (11) ◽  
pp. 517 ◽  
Author(s):  
Daniel García-Souto ◽  
Sandra Alonso-Rubido ◽  
Diana Costa ◽  
José Eirín-López ◽  
Emilio Rolán-Álvarez ◽  
...  

Periwinkles of the family Littorinidae (Children, 1834) are common members of seashore littoral communities worldwide. Although the family is composed of more than 200 species belonging to 18 genera, chromosome numbers have been described in only eleven of them. A molecular cytogenetic analysis of nine periwinkle species, the rough periwinkles Littorina arcana, L. saxatilis, and L. compressa, the flat periwinkles L. obtusata and L. fabalis, the common periwinkle L. littorea, the mangrove periwinkle Littoraria angulifera, the beaded periwinkle Cenchritis muricatus, and the small periwinkle Melarhaphe neritoides was performed. All species showed diploid chromosome numbers of 2n = 34, and karyotypes were mostly composed of metacentric and submetacentric chromosome pairs. None of the periwinkle species showed chromosomal differences between male and female specimens. The chromosomal mapping of major and minor rDNA and H3 histone gene clusters by fluorescent in situ hybridization demonstrated that the patterns of distribution of these DNA sequences were conserved among closely related species and differed among less related ones. All signals occupied separated loci on different chromosome pairs without any evidence of co-localization in any of the species.


2019 ◽  
Vol 191 (4) ◽  
pp. 475-483 ◽  
Author(s):  
Marcelo Guerra ◽  
Tiago Ribeiro ◽  
Leonardo P Felix

Abstract Holocentric chromosomes are rare among angiosperms, but have been suggested to be shared by all or most of the species of Cyperaceae and Juncaceae. However, no clear demonstration of the centromere type in Juncus, the largest genus of Juncaceae, has so far been published. Thus, we conducted a detailed chromosomal investigation of four Juncus spp. aiming to identify their centromere type. Mitotic chromosomes were analysed using the fluorochromes CMA and DAPI, fluorescent in situ hybridization (FISH) with rDNA probes and immunodetection of histones H3 phosphorylated at serine 10 (H3-S10ph) and H2A phosphorylated at threonine 133 (H2A-T133ph). DAPI-stained chromosomes of all species displayed typical primary constrictions, which were not related to AT-poor CMA+ heterochromatin or rDNA sites (usually negatively stained with DAPI). Immunodetection with H3-S10ph and H2A-T133ph revealed hyperphosphorylation of pericentromeric and centromeric regions, respectively, in a restricted area, as observed in monocentric chromosomes. Meiotic analyses in J. microcephalus showed no indication of inverted meiosis, commonly found in plants with holocentric chromosomes. Since the species investigated here belong to four different sections of Juncus and all of them display typical monocentric chromosomes, it seems that this kind of centromere is common in the genus and may represent the standard centromere organization for Juncus. If Juncus has monocentric chromosomes, there is no reason to hypothesize that other genera of Juncaceae for which centromeres have not been carefully investigated have holocentric chromosomes.


2020 ◽  
Vol 11 ◽  
Author(s):  
Neha Agrawal ◽  
Mehak Gupta ◽  
Surinder S. Banga ◽  
JS (Pat) Heslop-Harrison

Crop brassicas include three diploid [Brassica rapa (AA; 2n = 2x = 16), B. nigra (BB; 2n = 2x = 18), and B. oleracea (CC; 2n = 2x = 20)] and three derived allotetraploid species. It is difficult to distinguish Brassica chromosomes as they are small and morphologically similar. We aimed to develop a genome-sequence based cytogenetic toolkit for reproducible identification of Brassica chromosomes and their structural variations. A bioinformatic pipeline was used to extract repeat-free sequences from the whole genome assembly of B. rapa. Identified sequences were subsequently used to develop four c. 47-mer oligonucleotide libraries comprising 27,100, 11,084, 9,291, and 16,312 oligonucleotides. We selected these oligonucleotides after removing repeats from 18 identified sites (500–1,000 kb) with 1,997–5,420 oligonucleotides localized at each site in B. rapa. For one set of probes, a new method for amplification or immortalization of the library is described. oligonucleotide probes produced specific and reproducible in situ hybridization patterns for all chromosomes belonging to A, B, C, and R (Raphanus sativus) genomes. The probes were able to identify structural changes between the genomes, including translocations, fusions, and deletions. Furthermore, the probes were able to identify a structural translocation between a pak choi and turnip cultivar of B. rapa. Overall, the comparative chromosomal mapping helps understand the role of chromosome structural changes during genome evolution and speciation in the family Brassicaceae. The probes can also be used to identify chromosomes in aneuploids such as addition lines used for gene mapping, and to track transfer of chromosomes in hybridization and breeding programs.


2016 ◽  
Vol 149 (4) ◽  
pp. 297-303 ◽  
Author(s):  
Maelin da Silva ◽  
Patricia Barbosa ◽  
Roberto F. Artoni ◽  
Eliana Feldberg

Gymnotidae is a family of electric fish endemic to the Neotropics consisting of 2 genera: Electrophorus and Gymnotus. The genus Gymnotus is widely distributed and is found in all of the major Brazilian river systems. Physical and molecular mapping data for the ribosomal DNA (rDNA) in this genus are still scarce, with its chromosomal location known in only 11 species. As other species of Gymnotus with 2n = 54 chromosomes from the Paraná-Paraguay basin, G. mamiraua was found to have a large number of 5S rDNA sites. Isolation and cloning of the 5S rDNA sequences from G. mamiraua identified a fragment of a transposable element similar to the Tc1/mariner transposon associated with a non-transcribed spacer. Double fluorescence in situ hybridization analysis of this element and the 5S rDNA showed that they were colocalized on several chromosomes, in addition to acting as nonsyntenic markers on others. Our data show the association between these sequences and suggest that the Tc1 retrotransposon may be the agent that drives the spread of these 5S rDNA-like sequences in the G. mamiraua genome.


2020 ◽  
Vol 14 (4) ◽  
pp. 577-588
Author(s):  
Jaqueline Fernanda Dionísio ◽  
Joana Neres da Cruz Baldissera ◽  
Angélica Nunes Tiepo ◽  
José Antônio Marin Fernandes ◽  
Daniel Ricardo Sosa-Gómez ◽  
...  

In this paper, we present new cytogenetic data for three species of the family Pentatomidae: Dichelops melacanthus (Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851). All studied species presented holocentric chromosomes and inverted meiosis for the sex chromosomes. D. melacanthus has 2n = 12 (10A + XY); L. viridis showed 2n = 14 (12A + XY); and E. collaris showed 2n = 14 (12A + XY). C-banding was performed for the first time in these species and revealed terminal and interstitial heterochromatic regions on the autosomes; DAPI/CMA3 staining showed different fluorescent patterns. In all species, fluorescence in situ hybridization (FISH) with 18S rDNA probe identified signals on one autosomal bivalent, this being the first report of FISH application in the species D. melacanthus and L. viridis. The results obtained add to those already existing in the literature, enabling a better understanding of the meiotic behavior of these insects.


2020 ◽  
Vol 14 (4) ◽  
pp. 577-588
Author(s):  
Jaqueline Fernanda Dionísio ◽  
Joana Neres da Cruz Baldissera ◽  
Angélica Nunes Tiepo ◽  
José Antônio Marin Fernandes ◽  
Daniel Ricardo Sosa-Gómez ◽  
...  

In this paper, we present new cytogenetic data for three species of the family Pentatomidae: Dichelops melacanthus (Dallas, 1851), Loxa viridis (Palisot de Beauvois, 1805), and Edessa collaris (Dallas, 1851). All studied species presented holocentric chromosomes and inverted meiosis for the sex chromosomes. D. melacanthus has 2n = 12 (10A + XY); L. viridis showed 2n = 14 (12A + XY); and E. collaris showed 2n = 14 (12A + XY). C-banding was performed for the first time in these species and revealed terminal and interstitial heterochromatic regions on the autosomes; DAPI/CMA3 staining showed different fluorescent patterns. In all species, fluorescence in situ hybridization (FISH) with 18S rDNA probe identified signals on one autosomal bivalent, this being the first report of FISH application in the species D. melacanthus and L. viridis. The results obtained add to those already existing in the literature, enabling a better understanding of the meiotic behavior of these insects.


2008 ◽  
Vol 89 (4) ◽  
pp. 1081-1085 ◽  
Author(s):  
Heather E. Simmons ◽  
Edward C. Holmes ◽  
Andrew G. Stephenson

Zucchini yellow mosaic virus (ZYMV) is an economically important virus of cucurbit crops. However, little is known about the rate at which this virus has evolved within members of the family Cucurbitaceae, or the timescale of its epidemiological history. Herein, we present the first analysis of the evolutionary dynamics of ZYMV. Using a Bayesian coalescent approach we show that the coat protein of ZYMV has evolved at a mean rate of 5.0×10−4 nucleotide substitutions per site, per year. Notably, this rate is equivalent to those observed in animal RNA viruses. Using the same approach we show that the lineages of ZYMV sampled here have an ancestry that dates back no more than 800 years, suggesting that human activities have played a central role in the dispersal of ZYMV. Finally, an analysis of phylogeographical structure provides strong evidence for the in situ evolution of ZYMV within individual countries.


2016 ◽  
Vol 149 (4) ◽  
pp. 321-327 ◽  
Author(s):  
Allison Anjos ◽  
Gabriela C. Rocha ◽  
Andressa Paladini ◽  
Tatiane C. Mariguela ◽  
Diogo C. Cabral-de-Mello

Insects of the Cercopidae family are widely distributed and comprise 59 genera and 431 species in the New World. They are xylemophagous, causing losses in agricultural and pasture grasses, and are considered as emerging pests. Chromosomally, these insects have been studied by standard techniques, revealing variable diploid numbers and primarily X0 sex chromosome systems (males). We performed chromosome studies in 6 Mahanarva (Cercopidae) species using standard and differential chromosome staining as well as mapping of repetitive DNAs. Moreover, the relationship between the repetitive DNAs was analyzed at the interspecific level. A diploid chromosome number of 2n = 19,X0 was documented, with chromosomes gradually decreasing in size. Neutral or GC-rich regions were detected which varied depending on the species. Fluorescence in situ hybridization with a (TTAGG)n telomeric motif probe revealed terminal signals, matching those of the Cot DNAs obtained from each species, that were also restricted to the terminal regions of all chromosomes. Dot blot analysis with the Cot fraction from M. quadripunctata showed that at least part of the repetitive genome is shared among the 6 species. Our data highlight the conservation of chromosomal features and organization of repetitive DNAs in the genus Mahanarva, suggesting a low differentiation for chromosomes and repetitive DNAs in most of the 6 species studied.


Author(s):  
E. S. Boatman ◽  
G. E. Kenny

Information concerning the morphology and replication of organism of the family Mycoplasmataceae remains, despite over 70 years of study, highly controversial. Due to their small size observations by light microscopy have not been rewarding. Furthermore, not only are these organisms extremely pleomorphic but their morphology also changes according to growth phase. This study deals with the morphological aspects of M. pneumoniae strain 3546 in relation to growth, interaction with HeLa cells and possible mechanisms of replication.The organisms were grown aerobically at 37°C in a soy peptone yeast dialysate medium supplemented with 12% gamma-globulin free horse serum. The medium was buffered at pH 7.3 with TES [N-tris (hyroxymethyl) methyl-2-aminoethane sulfonic acid] at 10mM concentration. The inoculum, an actively growing culture, was filtered through a 0.5 μm polycarbonate “nuclepore” filter to prevent transfer of all but the smallest aggregates. Growth was assessed at specific periods by colony counts and 800 ml samples of organisms were fixed in situ with 2.5% glutaraldehyde for 3 hrs. at 4°C. Washed cells for sectioning were post-fixed in 0.8% OSO4 in veronal-acetate buffer pH 6.1 for 1 hr. at 21°C. HeLa cells were infected with a filtered inoculum of M. pneumoniae and incubated for 9 days in Leighton tubes with coverslips. The cells were then removed and processed for electron microscopy.


Sign in / Sign up

Export Citation Format

Share Document