Verification phase as a useful tool in the determination of the maximal oxygen uptake of distance runners

2006 ◽  
Vol 31 (5) ◽  
pp. 541-548 ◽  
Author(s):  
Adrian W. Midgley ◽  
Lars R. McNaughton ◽  
Sean Carroll

This study investigated the utility of a verification phase for increasing confidence that a “true” maximal oxygen uptake had been elicited in 16 male distance runners (mean age (±SD), 38.7  (± 7.5 y)) during an incremental treadmill running test continued to volitional exhaustion. After the incremental test subjects performed a 10 min recovery walk and a verification phase performed to volitional exhaustion at a running speed 0.5 km·h–1 higher than that attained during the last completed stage of the incremental phase. Verification criteria were a verification phase peak oxygen uptake ≤ 2% higher than the incremental phase value and peak heart rate values within 2 beats·min–1 of each other. Of the 32 tests, 26 satisfied the oxygen uptake verification criterion and 23 satisfied the heart rate verification criterion. Peak heart rate was lower (p = 0.001) during the verification phase than during the incremental phase, suggesting that the verification protocol was inadequate in eliciting maximal values in some runners. This was further supported by the fact that 7 tests exhibited peak oxygen uptake values over 100 mL·min–1 (≥ 3%) lower than the peak values attained in the incremental phase. Further research is required to improve the verification procedure before its utility can be confirmed.

2011 ◽  
Vol 26 (1) ◽  
pp. 33-44 ◽  
Author(s):  
Trine Moholdt ◽  
Inger Lise Aamot ◽  
Ingrid Granøien ◽  
Lisbeth Gjerde ◽  
Gitte Myklebust ◽  
...  

Objective: Exercise capacity strongly predicts survival and aerobic interval training (AIT) increases peak oxygen uptake effectively in cardiac patients. Usual care in Norway provides exercise training at the hospitals following myocardial infarction (MI), but the effect and actual intensity of these rehabilitation programmes are unknown. Design: Randomized controlled trial. Setting: Hospital cardiac rehabilitation. Subjects: One hundred and seven patients, recruited two to 12 weeks after MI, were randomized to usual care rehabilitation or treadmill AIT. Interventions: Usual care aerobic group exercise training or treadmill AIT as 4 × 4 minutes intervals at 85–95% of peak heart rate. Twice weekly exercise training for 12 weeks. Main measures: The primary outcome measure was peak oxygen uptake. Secondary outcome measures were endothelial function, blood markers of cardiovascular disease, quality of life, resting heart rate, and heart rate recovery. Results: Eighty-nine patients (74 men, 15 women, 57.4 ± 9.5 years) completed the programme. Peak oxygen uptake increased more ( P = 0.002) after AIT (from 31.6 ± 5.8 to 36.2 ± 8.6 mL·kg−1·min−1, P < 0.001) than after usual care rehabilitation (from 32.2 ± 6.7 to 34.7 ± 7.9 mL·kg−1·min−1, P < 0.001). The AIT group exercised with significantly higher intensity in the intervals compared to the highest intensity in the usual care group (87.3 ± 3.9% versus 78.7 ± 7.2% of peak heart rate, respectively, P < 0.001). Both programmes increased endothelial function, serum adiponectin, and quality of life, and reduced serum ferritin and resting heart rate. High-density lipoprotein cholesterol increased only after AIT. Conclusions: AIT increased peak oxygen uptake more than the usual care rehabilitation provided to MI patients by Norwegian hospitals.


2012 ◽  
Vol 31 (1) ◽  
pp. 97-104 ◽  
Author(s):  
Michael Hamlin ◽  
Nick Draper ◽  
Gavin Blackwell ◽  
Jeremy Shearman ◽  
Nicholas Kimber

Determination of Maximal Oxygen Uptake Using the Bruce or a Novel Athlete-Led Protocol in a Mixed PopulationTreadmill tests for maximal oxygen uptake (O2max) have traditionally used set speed and incline increments regardless of participants training or exercise background. The aim of this study was to determine the validity of a novel athlete-led protocol for determining maximal aerobic fitness in adults. Twenty-nine participants (21 male, 8 female, age 29.8 ± 9.5 y, BMI 24.4 ± 3.1, mean ± SD) from a variety of exercise backgrounds were asked to complete two maximal treadmill running tests (using the standard Bruce or a novel athlete-led protocol [ALP]) to volitional failure in a counter-balanced randomised cross-over trial one week apart. We found no substantial difference in maximal oxygen uptake (47.0 ± 9.1 and 46.8 ± 10.7 ml.kg-1.min-1, mean ± SD for the ALP and Bruce protocols respectively), evidenced by the Spearman correlation coefficient of 0.93 (90% confidence limits, 0.88-0.96). However, compared to the Bruce protocol, participants completing the ALP protocol attained a substantially higher maximal heart rate (ALP = 182.8 ± 10.5, Bruce = 179.7 ± 8.7 beats.min-1). Additionally, using the Bruce protocol took a longer period of time (23.2 ± 17.0 s) compared to the ALP protocol. It seems that using either treadmill protocol will give you similar maximal oxygen uptake results. We suggest the ALP protocol which is simpler, quicker and probably better at achieving maximal heart rates is a useful alternative to the traditional Bruce protocol.


2020 ◽  
Vol 45 (4) ◽  
pp. 357-361 ◽  
Author(s):  
Leonardo Trevisol Possamai ◽  
Fernando de Souza Campos ◽  
Paulo Cesar do Nascimento Salvador ◽  
Rafael Alves de Aguiar ◽  
Luiz Guilherme Antonacci Guglielmo ◽  
...  

The present study aimed to compare maximal oxygen uptake of a step incremental test with time to exhaustion verification tests (TLIM) performed on the same or different day. Nineteen recreationally trained cyclists (age: 23 ± 2.7 years; maximal oxygen uptake: 48.0 ± 5.8 mL·kg−1·min−1) performed 3 maximal tests as follows: (i) same day: an incremental test with 3-min stages followed by a TLIM at 100% of peak power output of the incremental test (TLIM-SAME) interspaced by 15 min; and (ii) different day: a TLIM at 100% of peak power output of the incremental test (TLIM-DIFF). The maximal oxygen uptake was determined for the 3 tests. The maximal oxygen uptake was not different among the tests (incremental: 3.83 ± 0.41; TLIM-SAME: 3.72 ± 0.42; TLIM-DIFF: 3.75 ± 0.41 L·min−1; P = 0.951). Seven subjects presented a variability greater than ±3% in both verification tests compared with the incremental test. The same-day verification test decreased the exercise tolerance (240 ± 38 vs. 310 ± 36 s) compared with TLIM-DIFF (P < 0.05). In conclusion, the incremental protocol is capable of measuring maximal oxygen uptake because similar values were observed in comparison with verification tests. Although the need for the verification phase is questionable, the additional tests are useful to evaluate individual variability. Novelty Step incremental test is capable of measuring maximal oxygen uptake with similar values during TLIM on the same or different day. Although the necessity of the verification phase is questionable, it can allow the determination of variability in maximal oxygen uptake.


Author(s):  
Natalia Danek ◽  
Marcin Smolarek ◽  
Kamil Michalik ◽  
Marek Zatoń

Background: Knowledge of acute responses to different sprint interval exercise (SIE) helps to implement new training programs. The aim of this study was to compare the acute physiological, metabolic and perceptual responses to two different SIE cycling protocols with different recovery durations. Methods: Twelve healthy, active male participants took part in this study and completed four testing sessions in the laboratory separated by a minimum of 72h. Two SIE protocols were applied in randomized order: SIE6×10”/4’—six “all-out” repeated 10-s bouts, interspersed with 4-min recovery; and SIESERIES—two series of three “all-out” repeated 10-s bouts, separated by 30-s recovery and 18-min recovery between series. Protocols were matched for the total work time (1 min) and recovery (20 min). Results: In SIESERIES, peak oxygen uptake and peak heart rate were significantly higher (p < 0.05), without differences in peak blood lactate concentration and mean rating of perceived exertion compared to SIE6×10”/4’. There were no differences in peak power output, peak oxygen uptake and peak heart rate between both series in SIESERIES. Conclusions: Two series composed of three 10-s “all-out” bouts in SIESERIES protocol evoked higher cardiorespiratory responses, which can provide higher stimulus to improve aerobic fitness in regular training.


2019 ◽  
Vol 46 (1) ◽  
pp. 14-20 ◽  
Author(s):  
Beata Rog ◽  
Kinga Salapa ◽  
Magdalena Okolska ◽  
Natalia Dluzniewska ◽  
Piotr Werynski ◽  
...  

The right ventricle provides systemic circulation in individuals with congenitally corrected transposition of the great arteries (CCTGA) and in those with complete transposition who have had an atrial switch repair (DTGA). The aim of this study was to evaluate how the systemic right ventricle adapts to increased workload and oxygen demand during exercise. From November 2005 through December 2015, 3,358 adult patients with congenital heart disease were treated at our institution; we identified 48 (26 females, 22 males; median age, 25.4 ± 8.1 yr) who met the study criteria; 37 had DTGA and atrial switch repair, and 11 had CCTGA. We studied their echocardiographic and cardiopulmonary exercise test results. A control group consisted of 29 healthy sex- and age-matched volunteers. On exercise testing, oxygen uptake at anaerobic threshold, peak oxygen uptake, peak heart rate, and percentage of maximal heart rate were significantly lower in the group with systemic right ventricle than in the control group (all P &lt;0.001); in contrast, the peak ventilatory equivalent for carbon dioxide was higher in the study group (P=0.013). Impaired systemic right ventricular function reduced peak oxygen uptake. The peak heart rate was lower in the CCTGA group than in the DTGA group. Our results indicate that reduced exercise capacity is related to impaired systemic right ventricular function, severe tricuspid valve regurgitation, and chronotropic incompetence. There was no correlation between cardiopulmonary exercise test results and time after surgery. Chronotropic efficiency is lower in individuals with CCTGA than in those with DTGA.


2002 ◽  
Vol 14 (4) ◽  
pp. 391-400
Author(s):  
John A. DiBella ◽  
Emily M. Johnson ◽  
Marco E. Cabrera

We compared maximal exercise parameters obtained using both a ramped Bruce (BR) and a standard Bruce treadmill protocol (BS) in 44 healthy children (9.9 – 1.9 yr) and adolescents (15.9 – 1.7 yr). The average weight and height for children was 36.7 – 10.7 kg and 141.2 – 13.2 cm, while for adolescents was 64.4 – 13.9 kg and 168.9 – 7.5 cm. No significant differences were found in peak heart rate (HRpeak) between protocols for children (BS: 198 – 10; BR: 196 – 11 bpm) or adolescents (BS:193 – 2; BR:192 – 11 bpm). Peak oxygen uptake (V̇O2peak) was also not significantly different for children (BS: 1.81 – 0.64; BR: 1.84 – 0.74 L/min) or adolescents (BS: 2.66 – 0.61; BR: 2.72 – 0.67 L/min). Based on our results, we conclude that equivalent peak HR and V̇O2 values can be obtained in normal children and adolescents using a standard or a ramped Bruce protocol.


2011 ◽  
Vol 36 (1) ◽  
pp. 153-160 ◽  
Author(s):  
Friederike Scharhag-Rosenberger ◽  
Anja Carlsohn ◽  
Michael Cassel ◽  
Frank Mayer ◽  
Jürgen Scharhag

Verification tests are becoming increasingly common for confirming maximal oxygen uptake (VO2 max) attainment. Yet, timing and testing procedures vary between working groups. The aims of this study were to investigate whether verification tests can be performed after an incremental test or should be performed on a separate day, and whether VO2 max can still be determined within the first testing session in subjects not satisfying the verification criterion. Forty subjects (age, 24 ± 4 years; VO2 max, 50 ± 7 mL·min–1·kg–1) performed a maximal incremental treadmill test and, 10 min afterwards, a verification test (VerifDay1) at 110% of maximal velocity (vmax). The verification criterion was a VerifDay1 peak oxygen uptake (VO2 peak) ≤5.5% higher than the incremental test value. Subjects not achieving the verification criterion performed another verification test at 115% vmax (VerifDay1′) 10 min later, trying to confirm VerifDay1 VO2 peak as VO2 max. All other subjects exclusively repeated VerifDay1 on a separate day (VerifDay2). Of the 40 subjects, 6 did not satisfy the verification criterion. In 4 of them, attainment of VO2 max was confirmed by VerifDay1′. VO2 peak was equivalent between VerifDay1 and VerifDay2 (3722 ± 991 mL·min–1 vs. 3752 ± 995 mL·min–1, p = 0.56), whereas time to exhaustion was significantly longer in VerifDay2 (2:06 ± 0:22 min:s vs. 2:42 ± 0:38 min:s, p < 0.001, n = 34). The verification test VO2 peak does not seem to be affected by a preceding maximal incremental test. Incremental and verification tests can therefore be performed within the same testing session. In individuals not achieving the verification criterion, VO2 max can be determined by means of a subsequent, more intense verification test in most but not all cases.


2019 ◽  
Vol 4 (2) ◽  
pp. 39 ◽  
Author(s):  
Avery D. Faigenbaum ◽  
Jie Kang ◽  
Nicholas A. Ratamess ◽  
Anne C. Farrell ◽  
Mina Belfert ◽  
...  

Integrative neuromuscular training (INT) has emerged as an effective strategy for improving health- and skill-related components of physical fitness, yet few studies have explored the cardiometabolic demands of this type of training in children. The aim of this study was to examine the acute cardiometabolic responses to a multi-modal INT protocol and to compare these responses to a bout of moderate-intensity treadmill (TM) walking in children. Participants (n = 14, age 10.7 ± 1.1 years) were tested for peak oxygen uptake (VO2) and peak heart rate (HR) on a maximal TM test and subsequently participated in two experimental conditions on nonconsecutive days: a 12-min INT protocol of six different exercises performed twice for 30 s with a 30 s rest interval between sets and exercises and a 12-min TM protocol of walking at 50% VO2peak. Throughout the INT protocol mean VO2 and HR increased significantly from 14.9 ± 3.6 mL∙kg−1∙min−1 (28.2% VO2 peak) to 34.0 ± 6.4 mL∙kg−1∙min−1 (64.3% VO2 peak) and from 121.1 ± 9.0 bpm (61.0% HR peak) to 183.5 ± 7.9 bpm (92.4% HR peak), respectively. While mean VO2 for the entire protocol did not differ between INT and TM, mean VO2 and HR during selected INT exercises and mean HR for the entire INT protocol were significantly higher than TM (all Ps ≤ 0.05). These findings suggest that INT can pose a moderate to vigorous cardiometabolic stimulus in children and selected INT exercises can be equal to or more metabolically challenging than TM walking.


Sign in / Sign up

Export Citation Format

Share Document