Muscle deoxygenation of upper-limb muscles during progressive arm-cranking exercise

2008 ◽  
Vol 33 (2) ◽  
pp. 231-238 ◽  
Author(s):  
Sarah-Jane C. Lusina ◽  
Darren E. R. Warburton ◽  
Nicola G. Hatfield ◽  
A. William Sheel

The purpose of this study was to determine which upper-limb muscle exhibits the greatest change in muscle deoxygenation during arm-cranking exercise (ACE). We hypothesized that the biceps brachii (BB) would show the greatest change in muscle deoxygenation during progressive ACE to exhaustion relative to triceps brachii (TR), brachioradialis (BR), and anterior deltoid (AD). Healthy young men (n = 11; age = 27 ± 1 y; mean ± SEM) performed an incremental ACE test to exhaustion. Near-infrared spectroscopy (NIRS) was used to monitor the relative concentration changes in oxy- (O2Hb), deoxy- (HHb), and total hemoglobin (Hbtot), as well as tissue oxygenation index (TOI) in each of the 4 muscles. During submaximal arm exercise, we found that changes to NIRS-derived measurements were not different between the 4 muscles studied (p > 0.05). At maximal exercise HHb was significantly higher in the BB compared with AD (p < 0.05). Relative to the other 3 muscles, BB exhibited the greatest decrease in O2Hb and TOI (p < 0.05). Our investigation provides two new and important findings: (i) during submaximal ACE the BB, TR, BR, and AD exhibit similar changes in muscle deoxygenation and (ii) during maximal ACE the BB exhibits the greatest change in intramuscular O2 status.

2011 ◽  
Vol 106 (3) ◽  
pp. 1489-1499 ◽  
Author(s):  
Curtis D. Manning ◽  
Parveen Bawa

Torque motor produced stretch of upper limb muscles results in two distinct reflex peaks in the electromyographic activity. Whereas the short-latency reflex (SLR) response is mediated largely by the spinal monosynaptic reflex pathway, the longer-latency reflex (LLR) is suggested to involve a transcortical loop. For the SLRs, patterns of heteronymous monosynaptic Ia connections have been well-studied for a large number of muscles in the cat and in humans. For LLRs, information is available for perturbations to proximal joints, although the protocols for most of these studies did not focus on heteronymous connections. The main objective of the present study was to elicit both SLRs and LLRs in wrist flexors and extensors and to examine heteronymous connections from these muscles to elbow flexors (biceps brachii; BiBr) and extensors (triceps brachii; TriBr) and to selected distal muscles, including abductor pollicis longus (APL), first dorsal interosseous (FDI), abductor digiti minimi (ADM), and Thenars. The stretch of wrist flexors produced SLR and LLR peaks in APL, FDI, ADM, Thenars, and BiBr while simultaneously inducing inhibition of wrist extensors and TriBr. When wrist extensors were stretched, SLR and LLR peaks were observed in TriBr, whereas the primary wrist flexors, APL and BiBr, were inhibited; response patterns of FDI, ADM, and Thenars were less consistent. The main conclusions from the observed data are that: 1) as in the cat, afferents from wrist flexors and extensors make heteronymous connections with proximal and distal upper limb muscles; and 2) the strength of heteronymous connections is greater for LLRs than SLRs in the distal muscles, whereas the opposite is true for the proximal muscles. In the majority of observations, SLR and LLR excitatory peaks were observed together. However, on occasion, LLRs were observed without the SLR response in hand muscles when wrist extensors were stretched.


2011 ◽  
Vol 23 (01) ◽  
pp. 75-82 ◽  
Author(s):  
Yu-Lin Ning ◽  
Jia-Da Li ◽  
Wei-Ching Lo ◽  
Chih-Hung Huang ◽  
Chu-Fen Chang ◽  
...  

Adequate pattern and consistency of the muscle recruitment is essential to symbolize the destruction of the opponent with high movement velocities and precise targeting of the opponent's head and body during a karate jab. The purpose of this study was to evaluate the reaction time (RT), motor time (MT), and total response time (TRT), as well as their correlation during a karate jab, and to investigate the recruitment pattern and consistency of muscles during motor time. As many as 14 professional karate athletes (age: 23.67 ± 2.64 years; height: 174.57 ± 7.13 cm; and weight: 72.75 ± 10.65 kg) participated in the current study. Each subject was instructed to pose in combat stance first and then to use their left hand to jab at an instrumented kicking target as soon as they saw the start signal. Surface electromyograms (EMGs) were recorded from 16 muscles, namely the pronator teres, biceps brachii, triceps brachii, and deltoid of the left upper limb, right erector spinae, left rectus abdominis, and gluteus maximus, rectus femoris, biceps femoris, tibialis anterior, and medial gastrocnemius of the right and left lower limbs. Start and stop signals from the instrumented target were also recorded synchronously to obtain the TRT. Significant correlation between MT and TRT indicated that MT was a key determinant for the TRT of the jab. When performing a karate jab, the karate athletes initiated the movement with postural adjustments of the legs and trunk prior to the onset of the voluntary jab by the upper limb, and with a proximal-to-distal sequence of muscle activation in the left arm. Good consistencies of muscle recruitment of the trunk, left arm, and leg, and cocontraction of the left triceps and biceps brachii also indicated a well-controlled jab by the left arm. These results provide important information on the patterns and the consistencies of the muscle recruitment for coaching a karate jab, which should be helpful for a better understanding of the motor control strategies of a karate jab and for developing a suitable training protocol.


2009 ◽  
Vol 102 (3) ◽  
pp. 1420-1429 ◽  
Author(s):  
Gilles Hoffmann ◽  
Derek G. Kamper ◽  
Jennifer H. Kahn ◽  
William Z. Rymer ◽  
Brian D. Schmit

Neural coupling of proximal and distal upper limb segments may have functional implications in the recovery of hemiparesis after stroke. The goal of the present study was to investigate whether the stretch reflex response magnitude of spastic finger flexor muscles poststroke is influenced by sensory input from the shoulder and the elbow and whether reflex coupling of muscles throughout the upper limb is altered in spastic stroke survivors. Through imposed extension of the metacarpophalangeal (MCP) joints, stretch of the relaxed finger flexors of the four fingers was imposed in 10 relaxed stroke subjects under different conditions of proximal sensory input, namely static arm posture (3 different shoulder/elbow postures) and electrical stimulation (surface stimulation of biceps brachii or triceps brachii, or none). Fast (300°/s) imposed stretch elicited stretch reflex flexion torque at the MCP joints and reflex electromyographic (EMG) activity in flexor digitorum superficialis. Both measures were greatest in an arm posture of 90° of elbow flexion and neutral shoulder position. Biceps stimulation resulted in greater MCP stretch reflex flexion torque. Fast imposed stretch also elicited reflex EMG activity in nonstretched heteronymous upper limb muscles, both proximal and distal. These results suggest that in the spastic hemiparetic upper limb poststroke, sensorimotor coupling of proximal and distal upper limb segments is involved in both the increased stretch reflex response of the finger flexors and an increased reflex coupling of heteronymous muscles. Both phenomena may be mediated through changes poststroke in the spinal reflex circuits and/or in the descending influence of supraspinal pathways.


2011 ◽  
Vol 110 (5) ◽  
pp. 1390-1399 ◽  
Author(s):  
Makii Muthalib ◽  
Hoseong Lee ◽  
Guillaume Y. Millet ◽  
Marco Ferrari ◽  
Kazunori Nosaka

This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOImin), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMGRMS) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOImin, and EMGRMS during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOImin, mean total hemoglobin volume, maximum total hemoglobin volume, and EMGRMS during exercise. Smaller ( P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOImin did not change, but EMGRMS increased 1–4 days following ECC1 and ECC2. During 100% MVC tasks, EMGRMS did not change, but torque and TOImin decreased 1–4 days following ECC1 and ECC2. TOImin during 100% MVC tasks and EMGRMS during 30% MVC tasks recovered faster ( P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.


2010 ◽  
Vol 109 (3) ◽  
pp. 710-720 ◽  
Author(s):  
Makii Muthalib ◽  
Hoseong Lee ◽  
Guillaume Y. Millet ◽  
Marco Ferrari ◽  
Kazunori Nosaka

Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb) = oxygenated-Hb + deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1–3 days following exercise. The torque integral during ECC was greater ( P < 0.05) than that during CON by ∼30%, and the decrease in TOI was smaller ( P < 0.05) by ∼50% during ECC than CON. Increases in tHb during the relaxation phases were smaller ( P < 0.05) by ∼100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater ( P < 0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1–3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased ( P < 0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.


2007 ◽  
Vol 103 (4) ◽  
pp. 1326-1331 ◽  
Author(s):  
Koichi Kurihara ◽  
Azusa Kikukawa ◽  
Asao Kobayashi ◽  
Toshio Nakadate

Gravity (G)-induced loss of consciousness (G-LOC), which is presumably caused by a reduction of cerebral blood flow resulting in a decreased oxygen supply to the brain, is a major threat to pilots of high-performance fighter aircraft. The application of cerebral near-infrared spectroscopy (NIRS) to monitor gravity-induced cerebral oxygenation debt has generated concern over potential sources of extracranial contamination. The recently developed NIR spatially resolved spectroscopy (SRS-NIRS) has been confirmed to provide frontal cortical tissue hemoglobin saturation [tissue oxygenation index (TOI)]. In this study, we monitored the TOI and the standard NIRS measured chromophore concentration changes of oxygenated hemoglobin and deoxygenated hemoglobin in 141 healthy male pilots during various levels of +Gz (head-to-foot inertial forces) exposure to identify the differences between subjects who lose consciousness and those who do not during high +Gz exposure. Subjects were exposed to seven centrifuge profiles, with +Gz levels from 4 to 8 Gz and an onset rate from 0.1 to 6.0 Gz/s. The SRS-NIRS revealed an ∼15% decrease in the TOI in G-LOC. The present study also demonstrated the TOI to be a useful variable to evaluate the effect of the anti-G protection system. However, there was no significant difference found between conditions with and without G-LOC in subjects with terminated G exposure. Further studies that elucidate the mechanism(s) behind the wide variety of individual differences may be needed for a method of G-LOC prediction to be effectively realized.


2021 ◽  
Vol 15 (1) ◽  
Author(s):  
Bruno Kusznir Vitturi ◽  
Marina Grandis ◽  
Sabrina Beltramini ◽  
Andrea Orsi ◽  
Angelo Schenone ◽  
...  

Abstract Background Parsonage–Turner syndrome is an acute peripheral neuropathy that affects the upper brachial plexus region. Previously published reports demonstrate that the condition can be triggered by surgery, infection, autoimmune diseases, strenuous exercise, trauma, radiation, and vaccination. Parsonage–Turner syndrome has already been reported in three other patients who were vaccinated against coronavirus disease 2019. Case presentation We report the case of a 51-year-old Caucasian man without comorbidities who received the first dose of the ChAdOx1-S recombinant vaccine (Vaxzevria, AstraZeneca, Oxford, UK) against coronavirus disease 2019 and was diagnosed with Parsonage–Turner syndrome. A few days after getting vaccinated, the patient reported a progressive increase in pain in the region of vaccine administration. One month later, the shoulder pain was followed by symptoms of hypoesthesia and muscle weakness on abduction and elevation of the left upper limb. Neurological examination revealed an atrophy of the proximal muscles of the left upper limb, accompanied by paresis of the left deltoid, biceps brachii, triceps brachii, and infraspinatus muscles. Electroneuromyography carried out 3 months after the onset of symptoms showed signs consistent with brachial plexus neuritis. The adverse reaction has been properly reported to the Italian Pharmacovigilance System (Italian Medicines Agency—Agenzia Italiana del Farmaco. Conclusion The increased awareness of such association is essential for early identification and diagnosis and, thus, better clinical outcomes.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Mónica Rojas-Martínez ◽  
Leidy Yanet Serna ◽  
Mislav Jordanic ◽  
Hamid Reza Marateb ◽  
Roberto Merletti ◽  
...  

AbstractThis paper presents a dataset of high-density surface EMG signals (HD-sEMG) designed to study patterns of sEMG spatial distribution over upper limb muscles during voluntary isometric contractions. Twelve healthy subjects performed four different isometric tasks at different effort levels associated with movements of the forearm. Three 2-D electrode arrays were used for recording the myoelectric activity from five upper limb muscles: biceps brachii, triceps brachii, anconeus, brachioradialis, and pronator teres. Technical validation comprised a signals quality assessment from outlier detection algorithms based on supervised and non-supervised classification methods. About 6% of the total number of signals were identified as “bad” channels demonstrating the high quality of the recordings. In addition, spatial and intensity features of HD-sEMG maps for identification of effort type and level, have been formulated in the framework of this database, demonstrating better performance than the traditional time-domain features. The presented database can be used for pattern recognition and MUAP identification among other uses.


2004 ◽  
Vol 20 (2) ◽  
pp. 129-143 ◽  
Author(s):  
Eadric Bressel ◽  
Gary D. Heise

The purpose of this study was to compare muscle activity, kinematic, and oxygen consumption characteristics between forward and reverse arm cranking. Twenty able-bodied men performed 5-min exercise bouts of forward and reverse arm cranking while electromyographic (EMG), kinematic, and oxygen consumption data were collected. EMG activity of biceps brachii, triceps brachii, deltoid, and infraspinatus muscles were recorded and analyzed to reflect on-time durations and amplitudes for each half-cycle (first 180° and second 180° of crank cycle). Kinematic data were quantified from digitization of video images, and oxygen consumption was calculated from expired gases. Dependent measures were analyzed with a MANOVA and follow-up univariate procedures; alpha was set at .01. The biceps brachii, deltoid, and infraspinatus muscles displayed greater on-time durations and amplitudes for select half-cycles of reverse arm cranking compared to forward arm cranking (p< 0.01). Peak wrist flexion was 9% less in reverse arm cranking (p< 0.01), and oxygen consumption values did not differ between conditions (p= 0.25). Although there were no differences in oxygen consumption and only minor differences kinematically, reverse arm cranking requires greater muscle activity from the biceps brachii, deltoid, and infraspinatus muscles. These results may allow clinicians to more effectively choose an arm cranking direction that either minimizes or maximizes upper extremity muscle activity depending on the treatment objectives.


2015 ◽  
Vol 118 (2) ◽  
pp. 156-162 ◽  
Author(s):  
J. Santos-Concejero ◽  
F. Billaut ◽  
L. Grobler ◽  
J. Oliván ◽  
T. D. Noakes ◽  
...  

The purpose of this study was to analyze the cerebral oxygenation response to maximal self-paced and incremental exercise in elite Kenyan runners from the Kalenjin tribe. On two separate occasions, 15 elite Kenyan distance runners completed a 5-km time trial (TT) and a peak treadmill speed test (PTS). Changes in cerebral oxygenation were monitored via near-infrared spectroscopy through concentration changes in oxy- and deoxyhemoglobin (Δ[O2Hb] and Δ[HHb]), tissue oxygenation index (TOI), and total hemoglobin index (nTHI). During the 5-km TT (15.2 ± 0.2 min), cerebral oxygenation increased over the first half (increased Δ[O2Hb] and Δ[HHb]) and, thereafter, Δ[O2Hb] remained constant (effect size, ES = 0.33, small effect), whereas Δ[HHb] increased until the end of the trial ( P < 0.05, ES = 3.13, large effect). In contrast, during the PTS, from the speed corresponding to the second ventilatory threshold, Δ[O2Hb] decreased ( P < 0.05, ES = 1.51, large effect), whereas Δ[HHb] continued to increase progressively until exhaustion ( P < 0.05, ES = 1.22, large effect). Last, the TOI was higher during the PTS than during the 5-km TT ( P < 0.001, ES = 3.08; very large effect), whereas nTHI values were lower ( P < 0.001, ES = 2.36, large effect). This study shows that Kenyan runners from the Kalenjin tribe are able to maintain their cerebral oxygenation within a stable range during a self-paced maximal 5-km time trial, but not during an incremental maximal test. This may contribute to their long-distance running success.


Sign in / Sign up

Export Citation Format

Share Document