Comparison between maximal lengthening and shortening contractions for biceps brachii muscle oxygenation and hemodynamics

2010 ◽  
Vol 109 (3) ◽  
pp. 710-720 ◽  
Author(s):  
Makii Muthalib ◽  
Hoseong Lee ◽  
Guillaume Y. Millet ◽  
Marco Ferrari ◽  
Kazunori Nosaka

Eccentric contractions (ECC) require lower systemic oxygen (O2) and induce greater symptoms of muscle damage than concentric contractions (CON); however, it is not known if local muscle oxygenation is lower in ECC than CON during and following exercise. This study compared between ECC and CON for changes in biceps brachii muscle oxygenation [tissue oxygenation index (TOI)] and hemodynamics [total hemoglobin volume (tHb) = oxygenated-Hb + deoxygenated-Hb], determined by near-infrared spectroscopy over 10 sets of 6 maximal contractions of the elbow flexors of 10 healthy subjects. This study also compared between ECC and CON for changes in TOI and tHb during a 10-s sustained and 30-repeated maximal isometric contraction (MVC) task measured immediately before and after and 1–3 days following exercise. The torque integral during ECC was greater ( P < 0.05) than that during CON by ∼30%, and the decrease in TOI was smaller ( P < 0.05) by ∼50% during ECC than CON. Increases in tHb during the relaxation phases were smaller ( P < 0.05) by ∼100% for ECC than CON; however, the decreases in tHb during the contraction phases were not significantly different between sessions. These results suggest that ECC utilizes a lower muscle O2 relative to O2 supply compared with CON. Following exercise, greater ( P < 0.05) decreases in MVC strength and increases in plasma creatine kinase activity and muscle soreness were evident 1–3 days after ECC than CON. Torque integral, TOI, and tHb during the sustained and repeated MVC tasks decreased ( P < 0.01) only after ECC, suggesting that muscle O2 demand relative to O2 supply during the isometric tasks was decreased after ECC. This could mainly be due to a lower maximal muscle mass activated as a consequence of muscle damage; however, an increase in O2 supply due to microcirculation dysfunction and/or inflammatory vasodilatory responses after ECC is recognized.

Author(s):  
Makii Muthalib ◽  
Graham Kerr ◽  
Kazunori Nosaka ◽  
Stephane Perrey

Functional Muscle metabolic demand during contractions evoked by neuromuscular electrical stimulation (NMES) has been consistently documented to be greater than voluntary contractions (VOL) at the same force level (10-50% maximal voluntary contraction-MVC). However, we have shown using a near-infrared spectroscopy (NIRS) technique that local muscle metabolic demand is similar between NMES and VOL performed at MVC levels, thus controversy exists. This study therefore compared biceps brachii muscle metabolic demand (tissue oxygenation index-TOI and total hemoglobin volume-tHb) during a 10s isometric contraction of the elbow flexors between NMES (stimulation frequency of 30Hz and current level to evoke 30% MVC) and VOL at 30% MVC (VOL-30%MVC) and MVC (VOL-MVC) level in 8 healthy men (23-33-y). Greater changes in TOI and tHb induced by NMES than VOL-30%MVC confirm previous studies of a greater local metabolic demand for NMES than VOL at the same force level. The same TOI and tHb changes for NMES and VOL-MVC suggest that local muscle metabolic demand and intramuscular pressure were similar between conditions. In conclusion, these findings indicate that NMES induce a similar local muscle metabolic demand as that of maximal VOL.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Kenichi Kimura ◽  
Takayoshi Ryujin ◽  
Makoto Uno ◽  
Ikuro Wakayama

The aim of the present study was to investigate the effect of electroacupuncture (EA) with different frequencies on muscle oxygenation in humans. The subjects were 8 healthy male volunteers. Muscle oxygenation was measured using near-infrared spectroscopy (NIRS). Blood pressure (BP) and heart rate (HR) were monitored simultaneously. After baseline recording, EA was given for 15 min and recovery was measured for 20 minutes. The procedure of EA at 1 Hz, at 20 Hz, and at control followed in the same subjects. Tissue oxygenation index (TOI) decreased during EA at 20 Hz (P<0.05) and increased during the recovery period. Normalized tissue hemoglobin index (nTHI) also decreased during EA at 20 Hz and increased during the recovery period (P<0.05), whereas TOI and nTHI in the EA at 1 Hz did not change significantly throughout the experiment. The peak TOI and nTHI values at 20 Hz during the recovery period were higher than the values at 1 Hz and in the control (P<0.05). BP and HR remained constant. These data suggest that the supply of oxygen to muscle decreased during EA at 20 Hz and increased after EA at 20 Hz, without any changes in HR and BP.


2006 ◽  
Vol 31 (5) ◽  
pp. 612-620 ◽  
Author(s):  
Lixin Wang ◽  
Takahiro Yoshikawa ◽  
Taketaka Hara ◽  
Hayato Nakao ◽  
Takashi Suzuki ◽  
...  

Various near-infrared spectroscopy (NIRS) variables have been used to estimate muscle lactate threshold (LT), but no study has determined which common NIRS variable best reflects muscle estimated LT. Establishing the inflection point of 2 regression lines for deoxyhaemoglobin (ΔHHbi.p.), oxyhaemoglobin (ΔO2Hbi.p.), and tissue oxygenation index (TOIi.p.), as well as for blood lactate concentration, we then investigated the relationships between NIRS variables and ventilatory threshold (VT), LT, or maximal tissue hemoglobin index (nTHImax) during incremental cycling exercise. ΔHHbi.p. and TOIi.p. could be determined for all 15 subjects, but ΔO2Hbi.p. was determined for only 11 subjects. The mean absolute values for the 2 measurable slopes of the 2 continuous linear regression lines exhibited increased changes in 3 NIRS variables. The workload and VO2 at ΔO2Hbi.p. and nTHImax were greater than those at VT, LT, ΔHHbi.p., and TOIi.p.. For workload and VO2, ΔHHbi.p. was correlated with VT and LT, whereas ΔO2Hbi.p. was correlated with nTHImax, and TOIi.p. with VT and nTHImax. These findings indicate that ΔO2Hb strongly corresponds with local perfusion, and TOI corresponds with both local perfusion and deoxygenation, but that ΔHHb can exactly determine deoxygenation changes and reflect O2 metabolic dynamics. The finding of strongest correlations between ΔHHb and VT or LT indicates that ΔHHb is the best variable for muscle LT estimation.


2006 ◽  
Vol 31 (1) ◽  
pp. 48-55 ◽  
Author(s):  
Kotaro Kawaguchi ◽  
Yukiko Hayashi ◽  
Kiyokazu Sekikawa ◽  
Mitsuru Tabusadani ◽  
Tsutomu Inamizu ◽  
...  

This study examined the relationship between acute cardiorespiratory and muscle oxygenation and blood volume changes during prolonged exercise. Eight healthy male volunteers (mean maximum oxygen uptake ([Formula: see text]O2max) = 41.6 ± 2.4 mL/kg/min) performed 60 min submaximal cycling at 50% [Formula: see text]O2max. Oxygen uptake ([Formula: see text]O2) was measured by indirect spirometry, cardiac output (CO) was estimated using a PortapresTM, and right vastus lateralis oxyhemoglobin/ myoglobin (oxyHb/Mb), deoxyhemoglobin/myoglobin (deoxyHb/Mb), and total hemoglobin/myoglobin (total Hb/Mb) were recorded using near-infrared spectroscopy (NIRS). After 40 min of exercise, there was a significant increase in [Formula: see text]O2 due to a significantly higher arteriovenous oxygen difference ((a - v)O2diff). After 30 min of exercise CO remained unchanged, but there was a significant decrease in stroke volume and a proportionate increase in heart rate, thus indicating the occurrence of cardiovascular drift. During the first few minutes of exercise, there was a decline in oxyHb/Mb and total Hb/Mb, whereas deoxyHb/Mb remained unchanged. Thereafter, oxyHb/Mb and total Hb/Mb increased systematically until the termination of exercise while deoxyHb/Mb declined. After 40 min of exercise, these changes were significantly different from the baseline values. There were no significant correlations between the changes in the NIRS variables and systemic [Formula: see text]O2 or mixed (a - v)O2diff during exercise. These results suggest that factors other than localized changes in muscle oxygenation and blood volume account for the increased [Formula: see text]O2 during prolonged submaximal exercise. Key words: near infrared spectroscopy, cardiovascular drift, systemic oxygen consumption.


2011 ◽  
Vol 110 (5) ◽  
pp. 1390-1399 ◽  
Author(s):  
Makii Muthalib ◽  
Hoseong Lee ◽  
Guillaume Y. Millet ◽  
Marco Ferrari ◽  
Kazunori Nosaka

This study investigated biceps brachii oxygenation and myoelectrical activity during and following maximal eccentric exercise to better understand the repeated-bout effect. Ten men performed two bouts of eccentric exercise (ECC1, ECC2), consisting of 10 sets of 6 maximal lengthening contractions of the elbow flexors separated by 4 wk. Tissue oxygenation index minimum amplitude (TOImin), mean and maximum total hemoglobin volume by near-infrared spectroscopy, torque, and surface electromyography root mean square (EMGRMS) during exercise were compared between ECC1 and ECC2. Changes in maximal voluntary isometric contraction (MVC) torque, range of motion, plasma creatine kinase activity, muscle soreness, TOImin, and EMGRMS during sustained (10-s) and 30-repeated isometric contraction tasks at 30% (same absolute force) and 100% MVC (same relative force) for 4 days postexercise were compared between ECC1 and ECC2. No significant differences between ECC1 and ECC2 were evident for changes in torque, TOImin, mean total hemoglobin volume, maximum total hemoglobin volume, and EMGRMS during exercise. Smaller ( P < 0.05) changes and faster recovery of muscle damage markers were evident following ECC2 than ECC1. During 30% MVC tasks, TOImin did not change, but EMGRMS increased 1–4 days following ECC1 and ECC2. During 100% MVC tasks, EMGRMS did not change, but torque and TOImin decreased 1–4 days following ECC1 and ECC2. TOImin during 100% MVC tasks and EMGRMS during 30% MVC tasks recovered faster ( P < 0.05) following ECC2 than ECC1. We conclude that the repeated-bout effect cannot be explained by altered muscle activation or metabolic/hemodynamic changes, and the faster recovery in muscle oxygenation and activation was mainly due to faster recovery of force.


2021 ◽  
Vol 12 ◽  
Author(s):  
Janne Bouten ◽  
Sander De Bock ◽  
Gil Bourgois ◽  
Sarah de Jager ◽  
Jasmien Dumortier ◽  
...  

Introduction: Acute apnea evokes bradycardia and peripheral vasoconstriction in order to conserve oxygen, which is more pronounced with face immersion. This response is contrary to the tachycardia and increased blood flow to muscle tissue related to the higher oxygen consumption during exercise. The aim of this study was to investigate cardiovascular and metabolic responses of dynamic dry apnea (DRA) and face immersed apnea (FIA).Methods: Ten female volunteers (17.1 ± 0.6 years old) naive to breath-hold-related sports, performed a series of seven dynamic 30 s breath-holds while cycling at 25% of their peak power output. This was performed in two separate conditions in a randomized order: FIA (15°C) and DRA. Heart rate and muscle tissue oxygenation through near-infrared spectroscopy were continuously measured to determine oxygenated (m[O2Hb]) and deoxygenated hemoglobin concentration (m[HHb]) and tissue oxygenation index (mTOI). Capillary blood lactate was measured 1 min after the first, third, fifth, and seventh breath-hold.Results: Average duration of the seven breath-holds did not differ between conditions (25.3 s ± 1.4 s, p = 0.231). The apnea-induced bradycardia was stronger with FIA (from 134 ± 4 to 85 ± 3 bpm) than DRA (from 134 ± 4 to 100 ± 5 bpm, p &lt; 0.001). mTOI decreased significantly from 69.9 ± 0.9% to 63.0 ± 1.3% (p &lt; 0.001) which is reflected in a steady decrease in m[O2Hb] (p &lt; 0.001) and concomitant increase in m[HHb] (p = 0.001). However, this was similar in both conditions (0.121 &lt; p &lt; 0.542). Lactate was lower after the first apnea with FIA compared to DRA (p = 0.038), while no differences were observed in the other breath-holds.Conclusion: Our data show strong decreases in heart rate and muscle tissue oxygenation during dynamic apneas. A stronger bradycardia was observed in FIA, while muscle oxygenation was not different, suggesting that FIA did not influence muscle oxygenation. An order of mechanisms was observed in which, after an initial tachycardia, heart rate starts to decrease after muscle tissue deoxygenation occurs, suggesting a role of peripheral vasoconstriction in the apnea-induced bradycardia. The apnea-induced increase in lactate was lower in FIA during the first apnea, probably caused by the stronger bradycardia.


2007 ◽  
pp. 57-65
Author(s):  
H Ogata ◽  
T Arimitsu ◽  
R Matsuura ◽  
T Yunoki ◽  
M Horiuchi ◽  
...  

Inactive forearm muscle oxygenation has been reported to begin decreasing from the respiratory compensation point (RCP) during ramp leg cycling. From the RCP, hyperventilation occurs with a decrease in arterial CO2 pressure (PaCO2). The aim of this study was to determine which of these two factors, hyperventilation or decrease in PaCO2, is related to a decrease in inactive biceps brachii muscle oxygenation during leg cycling. Each subject (n = 7) performed a 6-min two-step leg cycling. The exercise intensity in the first step (3 min) was halfway between the ventilatory threshold and RCP (170+/-21 watts), while that in the second step (3 min) was halfway between the RCP and peak oxygen uptake (240+/-28 watts). The amount of hyperventilation and PaCO2 were calculated from gas parameters. The average cross correlation function in seven subjects between inactive muscle oxygenation and amount of hyperventilation showed a negative peak at the time shift of zero (r = -0.72, p<0.001), while that between inactive muscle oxygenation and calculated PaCO2 showed no peak near the time shift of zero. Thus, we concluded that decrease in oxygenation in inactive arm muscle is closely coupled with increase in the amount of hyperventilation.


2019 ◽  
Vol 8 (5) ◽  
pp. 205846011985011
Author(s):  
Mikkel Taudorf ◽  
Michael B Nielsen ◽  
Torben V Schroeder ◽  
Lars Lönn ◽  
Henning B Nielsen

Background Provoked gluteal claudication is a known risk after endovascular aortic repair (EVAR). Lowered gluteal muscle oxygenation (SgmO2) may be demonstrated by near-infrared spectroscopy (NIRS). Purpose To evaluate NIRS-determined SgmO2 in EVAR patients. Material and Methods NIRS-determined SgmO2 was used in an observational study design (n = 17). From the ambulatory setting, seven EVAR patients were included with reported gluteal claudication from medical records. In 10 patients scheduled for EVAR, SgmO2 was measured before and after the procedure. NIRS sensors were applied bilaterally on the gluteal region. Treadmill walking (12% incline, 2.4 km/h) was introduced to stress gluteal muscles. Results A reduced SgmO2 with regional side difference ( P < 0.05) was noted in all 10 patients following EVAR and four reported gluteal claudication. In patients with gluteal claudication (n = 7), treadmill decreased SgmO2. The time to recover the SgmO2 was prolonged for tissue exposed to occluded hypogastric artery (median = 512 s, range = 73–1207 s vs. median = 137, range = 0–643 s; P = 0.046). Conclusions EVAR affects gluteal muscle oxygenation. NIRS could be used to assess whether gluteal claudication is related to lowered SgmO2.


2018 ◽  
pp. emermed-2018-207533
Author(s):  
Jumpei Tsukuda ◽  
Shigeki Fujitani ◽  
Kenichiro Morisawa ◽  
Nobuhiko Shimozawa ◽  
Brandon D Lohman ◽  
...  

Study objectivesNear-infrared spectroscopy is a modality that can monitor tissue oxygenation index (TOI) and has potential to evaluate return of spontaneous circulation (ROSC) during cardiopulmonary resuscitation (CPR). This study’s objectives were to evaluate whether TOI could be associated with ROSC and used to help guide the decision to either terminate CPR or proceed to extracorporeal CPR (ECPR).MethodsIn this observational study, we assessed the patients with out-of-hospital cardiac arrest with non-traumatic cause receiving CPR on arrival at our ED between 2013 and 2016. TOI monitoring was discontinued either on CPR termination after ROSC was reached or on patient death. Patients were classified into two groups: ROSC and non-ROSC group.ResultsOut of 141 patients, 24 were excluded and the remaining 117 were classified as follows: ROSC group (n=44) and non-ROSC group (n=73). ROSC group was significantly younger and more likely to have their event witnessed and bystander CPR. ROSC group showed a higher initial TOI than non-ROSC group (60.5%±17.0% vs 37.9%±13.7%: p<0.01). Area under the curve analysis was more accurate with the initial TOI than without it for predicting ROSC (0.88, 95% CI 0.82 to 0.95 vs 0.79, 95% CI 0.70 to 0.87: p<0.01). TOI cut-off value ≥59% appeared to favour survival to hospital discharge whereas TOI ≤24% was associated with non-ROSC.ConclusionsThis study demonstrated an association between higher initial TOI and ROSC. Initial TOI could increase the accuracy of ROSC prognosis and may be a clinical factor in the decision to terminate CPR and select patients who are to proceed to ECPR.


Sign in / Sign up

Export Citation Format

Share Document