Parameter studies and verifications on three-dimensional finite element analysis of rigid pavements

2004 ◽  
Vol 31 (5) ◽  
pp. 782-796 ◽  
Author(s):  
Ying-Haur Lee ◽  
Hsin-Ta Wu ◽  
Shao-Tang Yen

The main objective of this study was to conduct in-depth parameter studies and verifications on three-dimensional (3-D) finite element (FEM) analysis of rigid pavements. A systematic analytical approach was utilized and implemented in a Visual Basic software package to study the effects of mesh fineness and element selection. The deflection and stress convergence characteristics of various 3-D shell and solid elements were investigated. Several guidelines in mesh fineness and element selection were developed and recommended. Using the principles of dimensional analysis, an additional dimensionless variable (h/a, where h is the thickness of the slab and a is the radius of the applied load) was identified and verified to have a substantial influence on ABAQUS runs using either 3-D shell elements or 3-D solid elements. Separate 3-D FEM stress and deflection databases were developed using all dimensionless variables. An example critical stress predictive model was developed. Together with the existing two-dimensional FEM research findings, a tentative stress prediction equation was proposed to illustrate its possible applications.Key words: rigid pavement, finite element model, stress, deflection, design, evaluation.

Author(s):  
S. Ramakrishna ◽  
S. K. Lim ◽  
S. H. Teoh

This paper presents effective extensional stiffness of plain-weft knitted fabric reinforced composites obtained from finite element analysis and analytical calculations. For micro-mechanical analyses, a unit cell, enclosing the characteristic periodic repeat pattern in the knitted fabric, is isolated and modeled. Psuedo three-dimensional finite element model is constructed using laminated shell elements. Composite extensional stiffness is estimated for plane-stress and plane-strain conditions. Further, stiffness and compliance averaging methods have been used to determine the upper and lower limits of composite stiffness. The models are explicitly based on the properties of fiber and matrix materials and orientation of yarns. Results obtained from the models are compared with experimental values.


1996 ◽  
Vol 24 (4) ◽  
pp. 339-348 ◽  
Author(s):  
R. M. V. Pidaparti

Abstract A three-dimensional (3D) beam finite element model was developed to investigate the torsional stiffness of a twisted steel-reinforced cord-rubber belt structure. The present 3D beam element takes into account the coupled extension, bending, and twisting deformations characteristic of the complex behavior of cord-rubber composite structures. The extension-twisting coupling due to the twisted nature of the cords was also considered in the finite element model. The results of torsional stiffness obtained from the finite element analysis for twisted cords and the two-ply steel cord-rubber belt structure are compared to the experimental data and other alternate solutions available in the literature. The effects of cord orientation, anisotropy, and rubber core surrounding the twisted cords on the torsional stiffness properties are presented and discussed.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1152
Author(s):  
Rafał Nowak ◽  
Anna Olejnik ◽  
Hanna Gerber ◽  
Roman Frątczak ◽  
Ewa Zawiślak

The aim of this study was to compare the reduced stresses according to Huber’s hypothesis and the displacement pattern in the region of the facial skeleton using a tooth- or bone-borne appliance in surgically assisted rapid maxillary expansion (SARME). In the current literature, the lack of updated reports about biomechanical effects in bone-borne appliances used in SARME is noticeable. Finite element analysis (FEA) was used for this study. Six facial skeleton models were created, five with various variants of osteotomy and one without osteotomy. Two different appliances for maxillary expansion were used for each model. The three-dimensional (3D) model of the facial skeleton was created on the basis of spiral computed tomography (CT) scans of a 32-year-old patient with maxillary constriction. The finite element model was built using ANSYS 15.0 software, in which the computations were carried out. Stress distributions and displacement values along the 3D axes were found for each osteotomy variant with the expansion of the tooth- and the bone-borne devices at a level of 0.5 mm. The investigation showed that in the case of a full osteotomy of the maxilla, as described by Bell and Epker in 1976, the method of fixing the appliance for maxillary expansion had no impact on the distribution of the reduced stresses according to Huber’s hypothesis in the facial skeleton. In the case of the bone-borne appliance, the load on the teeth, which may lead to periodontal and orthodontic complications, was eliminated. In the case of a full osteotomy of the maxilla, displacements in the buccolingual direction for all the variables of the bone-borne appliance were slightly bigger than for the tooth-borne appliance.


2011 ◽  
Vol 27 (3) ◽  
pp. 309-320 ◽  
Author(s):  
C.-Y. Fan ◽  
C.-K. Chao ◽  
C.-C. Hsu ◽  
K.-H. Chao

ABSTRACTAnterior Lumbar Interbody Fusion (ALIF) has been widely used to treat internal disc degeneration. However, different cage positions and their orientations may affect the initial stability leading to different fusion results. The purpose of the present study is to investigate the optimum cage position and orientation for aiding an ALIF having a transfacet pedicle screw fixation (TFPS). A three-dimensional finite element model (ALIF with TFPS) has been developed to simulate the stability of the L4/L5 fusion segment under five different loading conditions. The Taguchi method was used to evaluate the optimized placement of the cages. Three control factors and two noise factors were included in the parameter design. The control factors included the anterior-posterior position, the medio-lateral position, and the convergent-divergent angle between the two cages. The compressive preload and the strengths of the cancellous bone were set as noise factors. From the results of the FEA and the Taguchi method, we suggest that the optimal cage positioning has a wide anterior placement, and a diverging angle between the two cages. The results show that the optimum cage position simultaneously contributes to a stronger support of the anterior column and lowers the risk of TFPS loosening.


2011 ◽  
Vol 291-294 ◽  
pp. 3282-3286 ◽  
Author(s):  
Jiang Wei Wu ◽  
Peng Wang

In port crane industry, the surface hardening technique is widely used in order to improve the strength of wheel. But the hardening depth is chosen only by according to the experience, and the effect of different hardened depths is not studied theoretically. In this paper, the contact stresses in wheel with different hardening depth have been analyzed by applying three-dimensional finite element model. Based on this model, the ANSYS10.0 finite element software is used. The elastic wheel is used to verify the numerical results with the Hertz’s theory. Three different hardening depths, namely 10mm, 25mm and whole hardened wheel, under three different vertical loads were applied. The effect of hardening depth of a surface hardened wheel is discussed by comparing the contact stresses and contact areas from the numerical results.


2011 ◽  
Vol 201-203 ◽  
pp. 1601-1605 ◽  
Author(s):  
Shang Ping Chen ◽  
Wen Juan Yao ◽  
Sheng Qing Zhu

In this paper, a nonlinear three-dimensional finite element model for super-long pile and soil interaction is established. In this model, contact elements are applied to simulate the nonlinear behavior of interaction of super-long pile and soil. A nonlinear elastic constitutive model for concrete is employed to analyze stress-strain relation of pile shaft under the axial load and the Duncan-Chang’s nonlinear constitutive model is used to reflect nonlinear and inelastic properties of soil. The side friction resistance, axial force, pile-tip resistance, and developing trend of soil plastic deformation are obtained and compared with measured results from static load tests. It is demonstrated that a super-long pile has the properties of degradation of side friction resistance and asynchronous action between side and pile-tip resistance, which is different from piles with a short to medium length.


2007 ◽  
Vol 44 (01) ◽  
pp. 16-26
Author(s):  
Ömer Eksik ◽  
R. Ajit Shenoi ◽  
Stuart S. J. Moy ◽  
Han Koo Jeong

This paper describes the development of a finite element model in order to assess the static response of a top-hat-stiffened panel under uniform lateral pressure. Systematic calculations were performed for deflection, strain, and stress using the developed model based on the ANSYS three-dimensional solid element (SOLID45). The numerical modeling results were compared to the experimental findings for validation and to further understand an internal stress pattern within the different constituents of the panel for explaining the likely causes of the panel failure. Good correlation between experimental and numerical strains and displacements was achieved.


Author(s):  
Hossam S. Badawi ◽  
Sherif A. Mourad ◽  
Sayed M. Metwalli

Abstract For a Computer Aided Design of a concrete truck mixer, a six cubic meter concrete mixer drum is analyzed using the finite element method. The complex mixer drum structure is subjected to pressure loading resulting from the plain concrete inside the drum, in addition to its own weight. The effect of deceleration of the vehicle and the rotational motion of the drum on the reactions and stresses are also considered. Equivalent static loads are used to represent the dynamic loading effects. Three-dimensional shell elements are used to model the drum, and frame elements are used to represent a ring stiffener around the shell. Membrane forces and bending stresses are obtained for different loading conditions. Results are also compared with approximate analysis. The CAD procedure directly used the available drafting and the results were used effectively in the design of the concrete mixer drum.


Author(s):  
K. S. Narayana ◽  
R. T. Naik ◽  
R. C. Mouli ◽  
L. V. V. Gopala Rao ◽  
R. T. Babu Naik

The work presents the Finite element study of the effect of elliptical chords on the static and dynamic strength of tubular T-joints using ANSYS. Two different geometry configurations of the T-joints have been used, namely Type-1 and Type-2. An elastic analysis has been considered. The Static loading conditions used are: axial load, compressive load, In-plane bending (IPB) and Out-plane bending (OPB). The natural frequencies analysis (dynamic loading condition) has also been carried out. The geometry configurations of the T-joints have been used, vertical tubes are called brace and horizontal tubes are called chords. The joint consists of brace joined perpendicular to the circular chord. In this case the ends of the chord are held fixed. The material used is mild steel. Using ANSYS, finite element modeling and analysis of T-joint has been done under the aforementioned loading cases. It is one of the most powerful methods in use but in many cases it is an expensive analysis especially due to elastic–plastic and creep problems. Usually, three dimensional solid elements or shell elements or the combination of two types of elements are used for generating the tubular joints mesh. In tubular joints, usually the fluid induced vibrations cause the joint to fail under resonance. Therefore the natural frequencies analysis is also an important issue here. Generally the empirical results are required as guide or comparison tool for finite element investigation. It is an effective way to obtain confidence in the results derived. Shell elements have been used to model the assembled geometry. Finite element ANSYS results have been validated with the LUSAS FEA and experimental results, that is within the experimentation error limit of ten percentage.


Sign in / Sign up

Export Citation Format

Share Document