Une génération interactive des données pour appliquer la méthode des éléments finis

1984 ◽  
Vol 11 (2) ◽  
pp. 335-345
Author(s):  
M. Sylvain Charron ◽  
M. Claude Marche

The advent of new and powerful computers, during the last few years, has resulted in a widespread application of numerical models to solve engineering problems. At the present time, one of the popular numerical techniques utilised by engineers is the finite element method.In order to generate and organize in an efficient manner the complex data structure resulting from its application a new modular approach has been developed. This approach is particularly suited to the treatment of heterogeneous domains often encountered in engineering practice.A modified version of the "Multigrid" technique is used to solve the Thompson elliptic equations in order to generate a 2-D finite element grid. A graphical interactive computation system is used and we can consider implementing the programs in a micro- or mini-computer. Key words: computer-aided design, finite element grid generator.

Author(s):  
Shiro Kobayashi ◽  
Soo-Ik Oh ◽  
Taylan Altan

The application of computer-aided design and manufacturing techniques is becoming essential in modern metal-forming technology. Thus process modeling for the determination of deformation mechanics has been a major concern in research . In light of these developments, the finite element method--a technique by which an object is decomposed into pieces and treated as isolated, interacting sections--has steadily assumed increased importance. This volume addresses advances in modern metal-forming technology, computer-aided design and engineering, and the finite element method.


2018 ◽  
Vol 18 (4) ◽  
pp. 329 ◽  
Author(s):  
AmandaMaria de Oliveira Dal Piva ◽  
GabrielaFernandes da Fonseca ◽  
GuilhermeSchmitt de Andrade ◽  
JoaoPaulo Mendes Tribst ◽  
AlexandreLuiz Souto Borges

Author(s):  
Hossam S. Badawi ◽  
Sherif A. Mourad ◽  
Sayed M. Metwalli

Abstract For a Computer Aided Design of a concrete truck mixer, a six cubic meter concrete mixer drum is analyzed using the finite element method. The complex mixer drum structure is subjected to pressure loading resulting from the plain concrete inside the drum, in addition to its own weight. The effect of deceleration of the vehicle and the rotational motion of the drum on the reactions and stresses are also considered. Equivalent static loads are used to represent the dynamic loading effects. Three-dimensional shell elements are used to model the drum, and frame elements are used to represent a ring stiffener around the shell. Membrane forces and bending stresses are obtained for different loading conditions. Results are also compared with approximate analysis. The CAD procedure directly used the available drafting and the results were used effectively in the design of the concrete mixer drum.


Actuators ◽  
2018 ◽  
Vol 7 (4) ◽  
pp. 88 ◽  
Author(s):  
Salvatore Ameduri ◽  
Angela Brindisi ◽  
Monica Ciminello ◽  
Antonio Concilio ◽  
Vincenzo Quaranta ◽  
...  

The work at hand focuses on an adaptive system aimed at improving the soundproof performance of car door seals at specific regimes (cruise), without interfering with the conventional opening and closing operations. The idea addresses the necessity of increasing seal effectiveness, jeopardized by aerodynamic actions that strengthen as the speed increases, generating a growing pressure difference between the internal and the external field in the direction of opening the door, and then deteriorating the acoustic insulation. An original expansion mechanism driven by a shape memory alloy (SMA) wire was integrated within the seal cavity to reduce that effect. The smart material was activated (heated) by using the Joule effect; its compactness contributed to the realization of a highly-integrable and modular system (expanding cells). In this paper, the system development process is described together with the verification and validation activity, aimed at proving the functionality of the realized device. Starting from industrial requirements, a suitable solution was identified by considering the basic phenomenon principle and the allowable design parameters. The envisaged system was designed and its executive digital mock-up (CAD, computer-aided design) was released. Prototyping and laboratory tests showed the reliability of the developed numerical models and validated the associated predictions. Finally, the system was integrated within the reference car. To demonstrate the insulation effect, the experimental campaign was carried out in an anechoic room, achieving significant results on the concept value.


Author(s):  
Ali Fazli ◽  
Behrooz Arezoo ◽  
Mohammad H. Hasanniya

A computer-aided design (CAD) system is developed for automatic process design and finite element (FE) modeling of axisymmetric deep drawn components. Using the theoretical and experimental rules, the system initially designs the process sequence of the component. The obtained process sequence is automatically modeled in abaqus software and the system tests whether failure occurs. The failure is supposed to happen when the fracture is predicted in FE simulation. If failure is predicted, the system changes the appropriate process parameters and carries out the simulation process again until all drawing stages are successful. The system returns the requested parameters for die design such as part geometries in middle stages, drawing forces, blank-holder forces, die, and punch profiles radii. The system is successfully tested for some components found in industry and handbooks.


2018 ◽  
Vol 90 (4) ◽  
pp. 652-658
Author(s):  
Péter Deák

Purpose The purpose of this paper is to make an analytical comparison of two vertical tail models from a structural point of view. Design/methodology/approach The original vertical tail design of PZL-106BT aircraft was used for Computer aided design (CAD) modeling and for creating the finite element model. Findings The nodal displacements, Von-Mises stresses and Buckling factors for two vertical tail models have been found using the finite element method. The idea of a possible Multidisciplinary concept assessment and design (MDCAD) concept was presented. Practical implications The used software analogy introduces an idea of having an automated calculation procedure within the framework of MDCAD. Originality/value The aircraft used for calculation had undergone a modification in its vertical tail length, as there was an urgent need to calculate for the plane’s manufacturer, PZL Warszawa – Okecie.


2018 ◽  
Vol 7 (4.27) ◽  
pp. 148
Author(s):  
Wan Muhammad Syahmi Wan Fauzi ◽  
Abdul Rahman Omar ◽  
Helmi Rashid

Recently, studies concerning motorcycle have been an overwhelming area of research interest. As an alternative to the real world assessment, researchers have utilized motorcycle simulator as a workstation to conduct studies in the motorcycle niche area. This paper deal with the development of a new motorcycle simulator named Semi-Interface Motorcycle Simulator (SiMS). Combination of Computer Aided Design (CAD) and Finite Element Analysis (FEA) software made it possible to design and simulates the motorcycle simulator’s conceptual design before being fabricated. The SiMS setup not only provides a near-to-real and immerse motorcycle riding experience on a super sport motorcycle model, but it also allows safer high speed motorcycle simulations to be conducted in a controlled environment that is portable and ergonomically easier to transport to various venues.  


Sign in / Sign up

Export Citation Format

Share Document