Metabolic control in Acinetobacter sp. I. Effect of C4 versus C2 and C3 substrates on isocitrate lyase synthesis

1970 ◽  
Vol 16 (8) ◽  
pp. 769-774 ◽  
Author(s):  
Norma J. Herman ◽  
Emily J. Bell

The comparative effects of various substrates serving as sole carbon and energy source or as a supplemental nutrient on the synthesis of isocitrate lyase by a species of Acinetobacter have been investigated. Previous work has shown that succinate, as carbon source, allows some late, limited induction of enzyme synthesis. No increase in synthesis is seen above the basal level, however, in cultures growing in a medium containing L-malate as a sole carbon source. The addition of acetate to cultures growing in media containing either of the C4 intermediates results in rapid enzyme induction. Further, Acinetobacter grows very well in pyruvate medium and isocitrate lyase is synthesized to a significant extent, indicating that the glyoxylate cycle is acting anaplerotically under these conditions. Phosphoenolpyruvate synthetase activity has been demonstrated in this organism; levels comparable to those observed in Escherichia coli have been detected; the levels of NAD- and NADP-linked "malic enzyme" and phosphoenolpyruvate carboxykinase, enzymes functioning in C4 to C3 conversion, do not fluctuate with the various carbon sources tested; i.e. no correlation between the in vitro specific activity of these enzymes and the levels of isocitrate lyase activity may be made. All of the data are consistent with the hypothesis that, in this aerobic organism, as opposed to the facultative E. coli, the C4 intermediates of the tricarboxylic acid cycle may be more direct "coarse" control metabolites regulating the rate of the glyoxylate cycle.

1989 ◽  
Vol 67 (2) ◽  
pp. 447-450 ◽  
Author(s):  
B. Dehorter ◽  
L. Lacoste

The activity of two enzymes of the tricarboxylic acid cycle (NADP+-isocitrate dehydrogenase, EC 1.1.1.42) and the glyoxylate cycle (isocitrate lyase, EC 4.1.3.1) were assayed in vitro to determine the effects of darkness, light, and mycosporin (P310) on sexual morphogenesis in Nectria galligena Bres. In the absence of mycosporin, high isocitrate lyase activity was associated with vegetative growth of fungi kept in the dark. In contrast, light-induced perithecial development and mycosporin biosynthesis could be correlated with high ratios of isocitrate dehydrogenase to isocitrate lyase activity. This was confirmed by the fact that when mycosporin was added to the nutrient medium with incubation in darkness, the fertility of the fungus was partially expressed and the activity of isocitrate lyase was significantly reduced. Thus this enzyme would be repressed in vivo by mycosporin. Because of its photomimetic role in sexual differentiation and regulation of intermediate metabolism, mycosporin appears to be a biochemical transmitter of light energy required for the formation of ascocarps.


mBio ◽  
2013 ◽  
Vol 4 (1) ◽  
Author(s):  
Michael C. Lorenz

ABSTRACTMost microorganisms maintain strict control of nutrient assimilation pathways to ensure that they preferentially use compounds that generate the most energy or are most efficiently catabolized. In doing so, they avoid potentially inefficient conflicts between parallel catabolic and metabolic pathways. The regulation of carbon source utilization in a wide array of bacterial and fungal species involves both transcriptional and posttranscriptional mechanisms, and while the details can vary significantly, carbon catabolite control is widely conserved. In many fungi, the posttranslational aspect (carbon catabolite inactivation [CCI]) involves the ubiquitin-mediated degradation of catabolic enzymes for poor carbon sources when a preferred one (glucose) becomes available. A recent article presents evidence for a surprising exception to CCI in the fungal pathogenCandida albicans, an organism that makes use of gluconeogenic carbon sources during infection (D. Sandai, Z. Yin, L. Selway, D. Stead, J. Walker, M. D. Leach, I. Bohovych, I. V. Ene, S. Kastora, S. Budge, C. A. Munro, F. C. Odds, N. A. Gow, and A. J. Brown,mBio3[6]:e00495-12).In vitro, addition of glucose to cells grown in a poor carbon source rapidly represses transcripts encoding gluconeogenic and glyoxylate cycle enzymes, such as phosphoenolpyruvate carboxykinase (Pck1p) and isocitrate lyase (Icl1p), in bothC. albicansandSaccharomyces cerevisiae. Yet, uniquely, theC. albicansproteins persist, permitting parallel assimilation of multiple carbon sources, likely because they lack consensus ubiquitination sites found in the yeast homologs. Indeed, the yeast proteins are rapidly degraded when expressed inC. albicans, indicating a conservation of the machinery needed for CCI. How this surprising metabolic twist contributes to fungal commensalism or pathogenesis remains an open question.


2001 ◽  
Vol 29 (2) ◽  
pp. 283-286 ◽  
Author(s):  
E. L. Rylott ◽  
M. A. Hooks ◽  
I. A. Graham

Molecular genetic approaches in the model plant Arabidopsis thaliana (ColO) are shedding new light on the role and control of the pathways associated with the mobilization of lipid reserves during oilseed germination and post-germinative growth. Numerous independent studies have reported on the expression of individual genes encoding enzymes from the three major pathways: β-oxidation, the glyoxylate cycle and gluconeogenesis. However, a single comprehensive study of representative genes and enzymes from the different pathways in a single plant species has not been done. Here we present results from Arabidopsis that demonstrate the co-ordinate regulation of gene expression and enzyme activities for the acyl-CoA oxidase- and 3-ketoacyl-CoA thiolasemediated steps of β-oxidation, the isocitrate lyase and malate synthase steps of the glyoxylate cycle and the phosphoenolpyruvate carboxykinase step of gluconeogenesis. The mRNA abundance and enzyme activities increase to a peak at stage 2, 48 h after the onset of seed germination, and decline thereafter either to undetectable levels (for malate synthase and isocitrate lyase) or low basal levels (for the genes of β-oxidation and gluconeogenesis). The co-ordinate induction of all these genes at the onset of germination raises the possibility that a global regulatory mechanism operates to induce the expression of genes associated with the mobilization of storage reserves during the heterotrophic growth period.


2007 ◽  
Vol 27 (22) ◽  
pp. 7895-7905 ◽  
Author(s):  
Nitnipa Soontorngun ◽  
Marc Larochelle ◽  
Simon Drouin ◽  
François Robert ◽  
Bernard Turcotte

ABSTRACT In Saccharomyces cerevisiae, RDS2 encodes a zinc cluster transcription factor with unknown function. Here, we unravel a key function of Rds2 in gluconeogenesis using chromatin immunoprecipitation-chip technology. While we observed that Rds2 binds to only a few promoters in glucose-containing medium, it binds many additional genes when the medium is shifted to ethanol, a nonfermentable carbon source. Interestingly, many of these genes are involved in gluconeogenesis, the tricarboxylic acid cycle, and the glyoxylate cycle. Importantly, we show that Rds2 has a dual function: it directly activates the expression of gluconeogenic structural genes while it represses the expression of negative regulators of this pathway. We also show that the purified DNA binding domain of Rds2 binds in vitro to carbon source response elements found in the promoters of target genes. Finally, we show that upon a shift to ethanol, Rds2 activation is correlated with its hyperphosphorylation by the Snf1 kinase. In summary, we have characterized Rds2 as a novel major regulator of gluconeogenesis.


1966 ◽  
Vol 12 (5) ◽  
pp. 1015-1022 ◽  
Author(s):  
Margaret von Tigerstrom ◽  
J. J. R. Campbell

The enzymes of the glyoxylate cycle, the tricarboxylic acid cycle, glucose oxidation, and hydrogen transport were measured in extracts of Pseudomonas aeruginosa grown with glucose, α-ketoglutarate, or acetate as sole carbon source. The specific activity of isocitritase was increased 25-fold by growth on acetate whereas malate synthetase was increased only 4-fold. All of the enzymes of glucose metabolism, operative at the hexose level, were inducible. The enzymes of the tricarboxylic acid cycle were present under all conditions of growth but extracts from acetate-grown cells contained only one-quarter of the fumarase and pyruvic oxidase activity and half the malate-oxidizing activity of the other extracts. Transhydrogenase, NADH oxidase, and NADPH oxidase activities were similar in each type of extracts. Most of the enzymes were present in the soluble cytoplasm, exceptions being glucose oxidase, succinic dehydrogenase, and NADH oxidase.


1988 ◽  
Vol 34 (11) ◽  
pp. 1217-1223 ◽  
Author(s):  
R. K. Bhatnagar ◽  
J. L. Doull ◽  
L. C. Vining

Both carbon- and nitrogen-limited media that supported a biphasic pattern of growth and chloramphenicol biosynthesis were devised for batch cultures of Streptomyces venezuelae. Where onset of the idiophase was associated with nitrogen depletion, a sharp peak of arylamine synthetase activity coincided with the onset of antibiotic production. The specific activity of the enzyme was highest when the carbon source in the medium was also near depletion at the trophophase–idiophase boundary. In media providing a substantial excess of carbon source through the idiophase, the peak specific activity was reduced by 75%, although the timing of enzyme synthesis was unaltered. Morever, chemostat cultures in which the growth rate was limited by the glucose concentration in the input medium failed to show a decrease in specific production of chloramphenicol as the steady-state intracellular glucose concentration was increased. The results suggest that a form of "carbon catabolite repression" regulates synthesis of chloramphenicol biosynthetic enzymes during a trophophase–idiophase transition induced by nitrogen starvation. However, this regulatory mechanism does not establish the timing of antibiotic biosynthesis and does not function during nitrogen-sufficient growth in the presence of excess glucose.


1975 ◽  
Vol 53 (14) ◽  
pp. 1411-1416 ◽  
Author(s):  
Christina E. Bimpong

Lipids measured as acyl glycerides and free fatty acids provided the major energy source during a 6-h motile and a 2-h germination period in zoospores and cysts, respectively, of Phytophthora palmivora. Carbohydrates and proteins decreased slightly during the 6-h motile period but increased significantly during germination. Specific activity of isocitrate lyase decreased both during zoospore motility and cyst germination. Only trace amounts of malate synthase activity were detected in zoospores and cysts. The activities of both NAD-isocitrate and malate dehydrogenases increased slightly, while those of NADP-isocitrate and succinate dehydrogenases decreased during the 6-h motile period. During the 2-h germination period the specific activities of NAD- and NADP-isocitrate, malate, and succinate dehydrogenases increased. It appears that during the motile stage the glyoxylate cycle provided more metabolites for the Krebs cycle than it did during germination.


1983 ◽  
Vol 29 (6) ◽  
pp. 718-723 ◽  
Author(s):  
Nachman Paster ◽  
Ilan Chet

The role of some enzymes in sclerotia production by Aspergillus ochraceus was studied using a sclerotia-producing strain grown under conditions in which sclerotia production was either favoured or inhibited. In addition, a mutant strain incapable of producing sclerotia was used. No significant differences in patterns of soluble proteins, polyphenol oxidase, and esterases could be detected electrophoretically by gel electrophoresis, while the peroxidase pattern of both the sclerotia-producing strain and the mutant showed three bands as compared with two bands that appeared when sclerotia formation was inhibited. The activities of the tricarboxylic acid cycle enzymes, malate dehydrogenase and succinate dehydrogenase, and those of the pentose-phosphate pathway, glucose-6 phosphate dehydrogenase and 6-phosphogluconate dehydrogenase, were almost identical in sclerotia- and nonsclerotia-producing mycelia. The activities of isocitrate lyase and malate synthetase, key enzymes of the glyoxylate cycle, and that of glyoxylate dehydrogenase which is related to this cycle were significantly reduced when sclerotia formation was inhibited either by methionine or by high levels of CO2. It is suggested that the glyoxylate cycle plays an important role in sclerotia formation in the fungus.


1973 ◽  
Vol 134 (2) ◽  
pp. 607-616 ◽  
Author(s):  
Nicole Bégin-Heick

Results are presented on the intracellular localization of some of the enzymes of gluconeogenesis, of the tricarboxylic acid cycle and of related enzymes in Astasia and Euglena grown with various substrates. The results indicate the particulate nature of at least part of the malate synthase of Astasia and of part of the malate synthase and isocitrate lyase in Euglena. However, the presence of glyoxysomes (microbodies) in Astasia and Euglena is still open to question, since it has not, so far, been possible to separate the enzymes of the glyoxylate cycle from succinate dehydrogenase in the particulate fraction.


2005 ◽  
Vol 37 (6) ◽  
pp. 406-414 ◽  
Author(s):  
Ying Lu ◽  
Yong-Rui Wu ◽  
Bin Han

Abstract The glyoxylate cycle is a modified form of the tricarboxylic acid cycle that converts C2 compounds into C4 dicarboxylic acids at plant developmental stages. By studying submerged rice seedlings, we revealed the activation of the glyoxylate cycle by identifying the increased transcripts of mRNAs of the genes of isocitrate lyase (ICL) and malate synthase (MS), two characteristic enzymes of the glyoxylate cycle. Northern blot analysis showed that ICL and MS were activated in the prolonged anaerobic environment. The activity assay of pyruvate decarboxylase and ICL in the submerged seedlings indicated an 8.8-fold and 3.5-fold increase over that in the unsubmerged seedlings, respectively. The activity assay of acetyl-coenzyme A synthetase in the submerged seedlings indicated a 3-fold increase over that in the unsubmerged seedlings, which is important for initiating acetate metabolism. Consequently, we concluded that the glyoxylate cycle was involved in acetate metabolism under anaerobic conditions.


Sign in / Sign up

Export Citation Format

Share Document