An examination of Penicillium notatum for the presence of Penicillium chrysogenum-type virus particles

1972 ◽  
Vol 18 (8) ◽  
pp. 1352-1353 ◽  
Author(s):  
Olga Volkoff ◽  
Teresa Walters ◽  
Rosamund A. Dejardin

Virus-like particles have been shown to be present in all strains of Penicillium chrysogenum examined but not in penicillin producing strains of P. notatum. Attempts to "cure" P. chrysogenum of the virus infection were not successful, nor was it possible to infect P. notatum with the purified virus from P. chrysogenum. Examination of longitudinal sections of the mycelia of P. chrysogenum showed that the virus particles are enclosed in vesicles in the infected cells.

2005 ◽  
Vol 79 (12) ◽  
pp. 7926-7932 ◽  
Author(s):  
Svetlana V. Bourmakina ◽  
Adolfo García-Sastre

ABSTRACT We generated a recombinant influenza A virus (Mmut) that produced low levels of matrix (M1) and M2 proteins in infected cells. Mmut virus propagated to significantly lower titers than did wild-type virus in cells infected at low multiplicity. By contrast, virion morphology and incorporation of viral proteins and vRNAs into virus particles were similar to those of wild-type virus. We propose that a threshold amount of M1 protein is needed for the assembly of viral components into an infectious particle and that budding is delayed in Mmut virus-infected cells until sufficient levels of M1 protein accumulate at the plasma membrane.


2007 ◽  
Vol 81 (10) ◽  
pp. 5423-5426 ◽  
Author(s):  
Cheng Huang ◽  
C. J. Peters ◽  
Shinji Makino

ABSTRACT Analysis of severe acute respiratory syndrome coronavirus (SCoV) by either sucrose gradient equilibrium centrifugation or a virus capture assay using an anti-SCoV S protein antibody demonstrated that the SCoV 6 protein, which is one of the accessory proteins of SCoV, was incorporated into virus particles. Coexpression of the SCoV S, M, E, and 6 proteins was sufficient for incorporation of the 6 protein into virus-like particles. Cells transfected with plasmid expressing the 6 protein released SCoV 6 protein; however, infected cells released SCoV 6 protein only in association with SCoV particles.


2006 ◽  
Vol 80 (20) ◽  
pp. 9977-9987 ◽  
Author(s):  
Liang Deng ◽  
Peihong Dai ◽  
Wanhong Ding ◽  
Richard D. Granstein ◽  
Stewart Shuman

ABSTRACT Langerhans cells (LCs) are antigen-presenting cells in the skin that play sentinel roles in host immune defense by secreting proinflammatory molecules and activating T cells. Here we studied the interaction of vaccinia virus with XS52 cells, a murine epidermis-derived dendritic cell line that serves as a surrogate model for LCs. We found that vaccinia virus productively infects XS52 cells, yet this infection displays an atypical response to anti-poxvirus agents. Whereas adenosine N1-oxide blocked virus production and viral protein synthesis during a synchronous infection, cytosine arabinoside had no effect at concentrations sufficient to prevent virus replication in BSC40 monkey kidney cells. Vaccinia virus infection of XS52 cells not only failed to elicit the production of various cytokines, including tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), IL-6, IL-10, IL-12 p40, alpha interferon (IFN-α), and IFN-γ, it actively inhibited the production of proinflammatory cytokines TNF-α and IL-6 by XS52 cells in response to exogenous lipopolysaccharide (LPS) or poly(I:C). Infection with a vaccinia virus mutant lacking the E3L gene resulted in TNF-α secretion in the absence of applied stimuli. Infection of XS52 cells or BSC40 cells with the ΔE3L virus, but not wild-type vaccinia virus, triggered proteolytic decay of IκBα. These results suggest a novel role for the E3L protein as an antagonist of the NF-κB signaling pathway. ΔE3L-infected XS52 cells secreted higher levels of TNF-α and IL-6 in response to LPS and poly(I:C) than did cells infected with the wild-type virus. XS52 cells were productively infected by a vaccinia virus mutant lacking the K1L gene. ΔK1L-infected cells secreted higher levels of TNF-α and IL-6 in response to LPS than wild-type virus-infected cells. Vaccinia virus infection of primary LCs harvested from mouse epidermis was nonpermissive, although a viral reporter protein was expressed in the infected LCs. Vaccinia virus infection of primary LCs strongly inhibited their capacity for antigen-specific activation of T cells. Our results highlight suppression of the skin immune response as a feature of orthopoxvirus infection.


Author(s):  
W. G. Banfield ◽  
G. Kasnic ◽  
J. H. Blackwell

An ultrastructural study of the intestinal epithelium of mice infected with the agent of epizootic diarrhea of infant mice (EDIM virus) was first performed by Adams and Kraft. We have extended their observations and have found developmental forms of the virus and associated structures not reported by them.Three-day-old NLM strain mice were infected with EDIM virus and killed 48 to 168 hours later. Specimens of bowel were fixed in glutaraldehyde, post fixed in osmium tetroxide and embedded in epon. Sections were stained with uranyl magnesium acetate followed by lead citrate and examined in an updated RCA EMU-3F electron microscope.The cells containing virus particles (infected) are at the tips of the villi and occur throughout the intestine from duodenum through colon. All developmental forms of the virus are present from 48 to 168 hours after infection. Figure 1 is of cells without virus particles and figure 2 is of an infected cell. The nucleus and cytoplasm of the infected cells appear clearer than the cells without virus particles.


Author(s):  
R. M. McCombs ◽  
M. Benyesh-Melnick ◽  
J. P. Brunschwig

Measles virus is an agent that is capable of replicating in a number of different culture cells and generally causes the formation of multinucleated giant cells. As a result of infection, virus is released from the cells into the culture fluids and reinfection can be initiated by this cell-free virus. The extracellular virus has been examined by negative staining with phosphotungstic acid and has been shown to be a rather pleomorphic particle with a diameter of about 140 mμ. However, no such virus particles have been detected in thin sections of the infected cells. Rather, the only virus-induced structures present in the giant cells are eosinophilic inclusions (intracytoplasmic or intranuclear). These inclusion bodies have been shown to contain helical structures, resembling the nucleocapsid observed in negatively stained preparations.


2007 ◽  
Vol 88 (10) ◽  
pp. 2627-2635 ◽  
Author(s):  
Alexey A. Matskevich ◽  
Karin Moelling

In mammals the interferon (IFN) system is a central innate antiviral defence mechanism, while the involvement of RNA interference (RNAi) in antiviral response against RNA viruses is uncertain. Here, we tested whether RNAi is involved in the antiviral response in mammalian cells. To investigate the role of RNAi in influenza A virus-infected cells in the absence of IFN, we used Vero cells that lack IFN-α and IFN-β genes. Our results demonstrate that knockdown of a key RNAi component, Dicer, led to a modest increase of virus production and accelerated apoptosis of influenza A virus-infected cells. These effects were much weaker in the presence of IFN. The results also show that in both Vero cells and the IFN-producing alveolar epithelial A549 cell line influenza A virus targets Dicer at mRNA and protein levels. Thus, RNAi is involved in antiviral response, and Dicer is important for protection against influenza A virus infection.


1975 ◽  
Vol 72 (8) ◽  
pp. 3240-3244 ◽  
Author(s):  
L. Gross ◽  
G. Schidlovsky ◽  
D. Feldman ◽  
Y. Dreyfuss ◽  
L. A. Moore

2003 ◽  
Vol 28 (1) ◽  
pp. 84-88 ◽  
Author(s):  
Priscila Belintani ◽  
José O. Gaspar

Cole latent virus (CoLV), genus Carlavirus, was studied by electron microscopy and biochemical approaches with respect both to the ultrastructure of the Chenopodium quinoa infected cells and to its association with chloroplasts. The CoLV was observed to be present as scattered particles interspersed with membranous vesicles and ribosomes or as dense masses of virus particles. These virus particles reacted by immunolabelling with a polyclonal antibody to CoLV. Morphologically, chloroplasts, mitochondria and nuclei appeared to be unaltered by virus infection and virus particles were not detected in these organelles. However, virus particle aggregates were frequently associated with the outer membrane of chloroplasts and occasionally with peroxisomes. Chloroplasts were purified by Percoll gradient, and the coat protein and virus-associated RNAs were extracted and analyzed by Western and Northern blots respectively. Coat protein and CoLV-associated RNAs were not detected within this organelle. The results presented in this work indicate that the association CoLV/chloroplasts, observed in the ultrastructural studies, might be a casual event in the host cell, and that the virus does not replicate inside the organelle.


2009 ◽  
Vol 84 (5) ◽  
pp. 2597-2609 ◽  
Author(s):  
Brent J. Ryckman ◽  
Marie C. Chase ◽  
David C. Johnson

ABSTRACT Human cytomegalovirus (HCMV) produces the following two gH/gL complexes: gH/gL/gO and gH/gL/UL128-131. Entry into epithelial and endothelial cells requires gH/gL/UL128-131, and we have provided evidence that gH/gL/UL128-131 binds saturable epithelial cell receptors to mediate entry. HCMV does not require gH/gL/UL128-131 to enter fibroblasts, and laboratory adaptation to fibroblasts results in mutations in the UL128-131 genes, abolishing infection of epithelial and endothelial cells. HCMV gO-null mutants produce very small plaques on fibroblasts yet can spread on endothelial cells. Thus, one prevailing model suggests that gH/gL/gO mediates infection of fibroblasts, while gH/gL/UL128-131 mediates entry into epithelial/endothelial cells. Most biochemical studies of gO have involved the HCMV lab strain AD169, which does not assemble gH/gL/UL128-131 complexes. We examined gO produced by the low-passage clinical HCMV strain TR. Surprisingly, TR gO was not detected in purified extracellular virus particles. In TR-infected cells, gO remained sensitive to endoglycosidase H, suggesting that the protein was not exported from the endoplasmic reticulum (ER). However, TR gO interacted with gH/gL in the ER and promoted export of gH/gL from the ER to the Golgi apparatus. Pulse-chase experiments showed that a fraction of gO remained bound to gH/gL for relatively long periods, but gO eventually dissociated or was degraded and was not found in extracellular virions or secreted from cells. The accompanying report by P. T. Wille et al. (J. Virol., 84:2585-2596, 2010) showed that a TR gO-null mutant failed to incorporate gH/gL into virions and that the mutant was unable to enter fibroblasts and epithelial and endothelial cells. We concluded that gO acts as a molecular chaperone, increasing gH/gL ER export and incorporation into virions. It appears that gO competes with UL128-131 for binding onto gH/gL but is released from gH/gL, so that gH/gL (lacking UL128-131) is incorporated into virions. Thus, our revised model suggests that both gH/gL and gH/gL/UL128-131 are required for entry into epithelial and endothelial cells.


1962 ◽  
Vol 12 (1) ◽  
pp. 1-15 ◽  
Author(s):  
Richard M. Franklin

A correlation of cytochemical changes with virus production has been studied in L cells infected with Mengovirus. After a latent period of about 2 hours, virus was produced rapidly, reaching maximum titers of up to 12,000 particles per cell in 6 to 8 hours. The earliest cytological change was in the nucleus and consisted of a slight condensation of chromatin. There is no evidence, however, for the multiplication of either the viral RNA or protein in the nucleus. RNA, of high molecular weight, accumulated in the perinuclear area of the cytoplasm and was later found in inclusions. The perinuclear RNA was digestible with RNase and may be located in or on ribosomes. The inclusion RNA was resistant to RNase but could be removed by pepsin or potassium permanganate; it is probably in completed virus particles. Viral antigen was first observed in a perinuclear location and later in the above-mentioned inclusions. Although the viral protein contains appreciable amounts of arginine and lysine, it is not a basic protein of the histone type. Phase-contrast microscopy of living cells clearly demonstrated the role of the inclusions in release of virus from infected cells. A comparison is made between these cytological changes in Mengo-infected cells and those which have been found by other workers in polio-infected cells. There are many very similar changes.


Sign in / Sign up

Export Citation Format

Share Document