The fine structure of mature and germinating chlamydospores of Fusarium oxysporum

1979 ◽  
Vol 25 (7) ◽  
pp. 808-817 ◽  
Author(s):  
I. L. Stevenson ◽  
S. A. W. E. Becker

A number of features not described previously has been revealed in electron-microscope studies of mature chlamydospores of Fusarium oxysporum. On the maturation of one isolate, many spores formed a thick matrix-like layer containing electron-dense particles on the exterior surface of the spore wall. In thin sections of mature chlamydospores of the same isolate, cisternae of endoplasmic reticulum surrounding, and in close apposition to, the limiting boundary of the lipid bodies were revealed.The germination of chlamydospores was accompanied by (a) the rapid appearance of polysaccharide deposits and changes in the configuration of some subcellular organelles, (b) the formation of a new wall layer between the plasma membrane and the innermost layer of the spore Wall, (c) the rupture of the outermost coats of the spore wall, and (d) the emergence of the germ tube as an extension of the new wall layer.

1982 ◽  
Vol 60 (11) ◽  
pp. 2313-2324 ◽  
Author(s):  
Michael T. Higham ◽  
Kathleen M. Cole

Spore development was studied in Choanephora cucurbitarum by using transmission and scanning electron microscopy. Sporangioles are produced by expansion of the ampulla wall. A two-layered spore wall is then constructed within the spine-covered sporangiole wall. The outer spore wall layer is longitudinally grooved and is devoid of spines or appendages. The inner wall layer is thinner and electron transparent. During wall production, dark-staining granular vesicles were observed in the spore cytoplasm. Their contents stained similarly to the material of the outer wall layer. Mature spores possessed a third, innermost wall layer. This was identified as a new wall layer, which was continuous with the germ-tube wall of germinated spores. Released spores were observed to be contained within the sporangiole during dispersal and germination.


1976 ◽  
Vol 54 (8) ◽  
pp. 698-705 ◽  
Author(s):  
A. Beckett

Ascospore germination in Daldinia concentrica has been studied using light and electron microscope techniques. Preliminary observations indicated that lipid globules were utilized during early stages of germination. Apical wall vesicles were localized during germ tube initiation and were involved in the differentiation of a filamentous germ tube. Wall synthesis occurred during germination and resulted in a new wall layer, which was different in ultratexture to the spore wall and which formed the germ tube wall. Possible implications of the concept of spore wall and vegetative wall types during germination are discussed.


1989 ◽  
Vol 67 (9) ◽  
pp. 2576-2589 ◽  
Author(s):  
J. P. Latgé ◽  
D. F. Perry ◽  
M. C. Prévost ◽  
R. A. Samson

Wall development during primary spore formation, discharge, and germination of Entomophthorales is emphasized in ultrastructural studies of Conidiobolus, Entomophaga, Neozygites, and Erynia. In the fungi examined, spore and sporophore walls consist of a thick, electron-translucent inner layer and a thin, electron-dense outer layer. During spore formation, cytoplasm of the supporting sporophore cell migrates into the spore initial. As the former cell empties, a septum develops. Discharge is caused by inversion of the papillum, which lacks the electron-dense layer. Only in Erynia did the two spore wall layers separate upon impact. Intracytoplasmic organization of the primary spore is typical of the Zygomycotina; the morphology of organelles was characteristic of species, whereas nuclear ultrastructure was consistent within genera. Conidiobolus nuclei have a prominent nucleolus that lacks heterochromatin, in contrast with the other genera where large patches of heterochromatin were observed. Upon germination, no rupture of the spore outer layer was observed other than at points of germ tube emergence. The germ tube wall was continuous with the inner spore wall layer. The results are discussed in reference to Entomophthorales taxonomy and definition of the terms conidium and monosporous sporangiolum.


1988 ◽  
Vol 34 (2) ◽  
pp. 180-186 ◽  
Author(s):  
Maria R. Diaz-Torres ◽  
Felix Claverie-Martin ◽  
Michael J. Geoghegan

The chemical composition and ultrastructure of the cell wall of Rhizopus stolonifer sporangiospores were determined. Spores were examined by transmission electron microscopy using both thin sections and surface replicas, and by scanning electron microscopy. The spore wall was found to be composed of three layers: (i) a ridged electron-opaque outer layer (10–240 nm thick) occasionally covered by a very thin extra layer; (ii) an electron-transparent layer containing electron-dense areas (160–245 nm thick); and (iii) an innermost layer of relatively high electron density overlaying the plasma membrane (15–40 nm thick). The spore wall had a rough amorphous surface without rodlet fascicles. Chemical analysis showed that the major components were protein, glucan, chitosan, and melanin, followed by smaller amounts of uronic acids, lipids, chitin, and mannose. The protein(s) contained high levels of aspartic acid and glutamic acid, followed by glycine, alanine, lysine, histidine, serine, and by smaller amounts of other amino acids. Melanin was intimately associated with protein and glucosamine.


1978 ◽  
Vol 56 (7) ◽  
pp. 747-753 ◽  
Author(s):  
P. Jeffries ◽  
T. W. K. Young

Using results obtained with light and scanning electron microscopy of critical-point-dried material and transmission electron microscopy of carbon replicas and freeze-fracture and ultra-thin sections, the structure and germination of the sporangiospore of Phascolomyces articulosus Boedijn is described. The sporangial wall is trilaminate and the ornamented spore wall is two layered. During germination, a new wall layer develops between the plasmalemma and the original spore wall. Sporangial structure is related to that of other members of the Thamnidiaceae and the use of germinating spores of P. articulosus for infection studies of the mycoparasite Piptocephalis unispora is indicated.


2005 ◽  
Vol 71 (11) ◽  
pp. 6673-6679 ◽  
Author(s):  
David Roesti ◽  
Kurt Ineichen ◽  
Olivier Braissant ◽  
Dirk Redecker ◽  
Andres Wiemken ◽  
...  

ABSTRACT Spores of the arbuscular mycorrhizal fungi (AMF) Glomus geosporum and Glomus constrictum were harvested from single-spore-derived pot cultures with either Plantago lanceolata or Hieracium pilosella as host plants. PCR-denaturing gradient gel electrophoresis analysis revealed that the bacterial communities associated with the spores depended more on AMF than host plant identity. The composition of the bacterial populations linked to the spores could be predominantly influenced by a specific spore wall composition or AMF exudate rather than by specific root exudates. The majority of the bacterial sequences that were common to both G. geosporum and G. constrictum spores were affiliated with taxonomic groups known to degrade biopolymers (Cellvibrio, Chondromyces, Flexibacter, Lysobacter, and Pseudomonas). Scanning electron microscopy of G. geosporum spores revealed that these bacteria are possibly feeding on the outer hyaline spore layer. The process of maturation and eventual germination of AMF spores might then benefit from the activity of the surface microorganisms degrading the outer hyaline wall layer.


1975 ◽  
Vol 53 (1) ◽  
pp. 56-61 ◽  
Author(s):  
J. W. Paden

Ascospores of Cookeina sulcipes germinate by one of two modes: (1) by the production of blastoconidia on sympodially proliferating conidiogenous cells which may arise from any point on the spore surface, and (2) by a thick polar germ tube. No ascospores were seen to germinate both ways. The conidiogenous cells are occasionally modified into narrow hyphae. The blastoconidia germinate readily but are evidently very short-lived. Ascospores of Phillipsia crispata germinate by two polar germ tubes; there is no formation of blastoconidia. In both species the inner ascospore wall separated from an outer wall layer during germination. In culture both C. sulcipes and P. crispata form arthroconidia. The arthroconidia are uninucleate; they germinate readily and reproduce the species when transferred to fresh plates.


1977 ◽  
Vol 55 (9) ◽  
pp. 1057-1063 ◽  
Author(s):  
Charles W. Mims

Each basidiospore of Gymnosporangium juniperi-virginianae contains many ribosomes as well as lipid droplets, mitochondria, small vesicles, endoplasmic reticula, and structures thought to be microbodies. Mature spores are either uninucleate or binucleate although larger, tetranucleate spores were occasionally observed. The spore wall appears as a thin layer except around the hilar region where two layers are evident. Germination is almost always lateral although no germ pore region was noted in the wall. Vacuolation takes place during germination and lipid bodies disappear. The wall of the germ tube arising from the spore is continuous with that of the spore. A large number of vesicles is present in the germ tube. Basidiospores may also germinate by repetition.


1992 ◽  
Vol 70 (10) ◽  
pp. 1964-1983 ◽  
Author(s):  
Brian A. Fineran ◽  
Judith M. Fineran

Spore wall organization in the five species of Entorrhiza (Ustilaginales) has been investigated using thin sections for transmission electron microscopy, supported by light and scanning electron microscopy and some freeze-etching. Material was examined from herbaria, specimens preserved in fixative, and fresh host tissue. The wall has four main layers, numbered 1–4 from the outside to inside of the wall; some layers are further differentiated into zones. Layer 1 in E. aschersoniana, E. caspaiyana, and E. caricicola has two zones: a broad outer zone 2 of dense matrix and a narrow inner zone 1 of less compacted material. Zone 1 is absent in E. cypericola. In E. scirpicola, layer 1 is represented by discontinuous longitudinal ridges. In all spores, layer 2 is composed of a homogeneous electron-dense matrix. Layer 1 in E. aschersoniana, E. casparyana, and E. caricicola is uniformly thick, but in E. cypericola it is broad with an irregular outer margin. In E. scirpicola, layer 2 is differentiated into a distinctive pattern of longitudinal ribs. In all spores of Entorrhiza, layer 3 is resolvable into fine lamellae, corresponding to the mosaic of striations seen after freeze-etching. Layer 3 in Entorrhiza is equivalent to the partition layer described in other Tilletiaceae. Layer 4 has the same organization in all the species, consisting of a very narrow zone 2 abutting layer 3 and a broad zone 1 that forms the rest of the layer. Based on wall structure, E. aschersoniana and E. casparyana represent the most closely related species, followed by E. caricicola, with E. cypericola more distant again. Entorrhiza scirpicola is considered the least related of the species; only its layers 3 and 4 resemble the other species. Key words: Entorrhiza, Tilletiaceae, spore wall ultrastructure, species relationships.


2001 ◽  
Vol 7 (S2) ◽  
pp. 174-175
Author(s):  
W.M. Hess ◽  
D.J. Weber

The basidiomycete fungus, Tilletia constitutes the most important group of smuts economically as they infect cereal grains which provide a major portion of the world’s food supply. The teliospores of the smuts which have been studied have a spore wall layer called the partition layer or the striated zone which is very resistant to fixatives and resins used for electron microscopy. We assume that the chemical nature of this wall layer is the primary factor to prevent spore desiccation and to maintain spore viability for many years. Teliospores of Tilletia tritici (Bjerk.) Wint. (formerly T. caries), T. controversa Kühn, T. indica Mitra, and Neovossia horrida (Tak.) Padwick and Khan all have a reticulated exterior spore layer (sheath). Common bunt, Tilletia laevis Kühn (formerly T. foetida) teliospores lack this exterior reticulated layer, but are also resistant to spore desiccation and maintain viability for many years. Therefore, the purpose of this study was to compare the ultrastructural characteristics of the partition layer of T. laevis teliospores with the partition layer of other teliospores of smut fungi which have been studied.


Sign in / Sign up

Export Citation Format

Share Document