Changes in the surface charge of bacteria caused by heavy metals do not affect survival

1996 ◽  
Vol 42 (7) ◽  
pp. 621-627 ◽  
Author(s):  
Y. E. Collins ◽  
G. Stotzky

Bacillus subtilis and Agrobacterium radiobacter remained viable when exposed to Ni (1 × 10−4 M; ionic strength (μ) = 3 × 10−4) at pH values known to cause a change of the net negative charge of the cells to a net positive charge (charge reversal). The gross morphology, as determined by scanning electron microscopy, of these and other bacteria and of Saccharomyces cerevisiae was not altered in the presence of Ni, Cu, and Zn (1 × 10−4 M; μ = 3 × 10−4), which caused a charge reversal at pH values between 6.0 and 9.0. Similar results were obtained in the presence of Na and Mg, which did not cause charge reversal at the same μ and pH values. These results confirmed that cells remain viable when their surface charge is changed in the presence of some heavy metals at high pH values.Key words: heavy metals, electrokinetic properties, survival of bacteria.

Clay Minerals ◽  
1997 ◽  
Vol 32 (4) ◽  
pp. 545-556 ◽  
Author(s):  
R. Naidu ◽  
R. J. Morrison ◽  
L. Janik ◽  
M. Asghar

AbstractThe clay mineralogy and surface charge characteristics of four basaltic soils from Western Samoa have been studied. The soils contained subordinate to dominant amounts of poorly ordered allophanic material in addition to varying amounts of crystalline free iron oxide minerals. Infrared studies revealed the presence of trace to subordinate amounts of kaolin minerals in all the soils. The surface charge-pH curves followed a constant potential model indicating the presence of substantial amounts of pH-dependent charge. Some negative charge was present, however, at pH values as low as 3.0 and small quantities of positive charge were detected at pH values as high as 9. Values for PZC ranged from 2.2 to 3.9 and these were generally higher than the pHo determined by the ΔpH method.


Soil Research ◽  
1976 ◽  
Vol 14 (2) ◽  
pp. 197 ◽  
Author(s):  
MDA Bolland ◽  
AM Posner ◽  
JP Quirk

The surface charge of several natural kaolinites was measured in the pH range 3-10 using an exchange technique. The positive charge was found to increase with decreasing pH and sometimes to increase with increasing ionic strength; it occurred on the kaolinites at pH values as high as 9 and 10 and was particularly evident at high ionic strengths. The positive surface charge on kaolinites is thought to be due to exposed alumina such as is found on oxide surfaces. Aluminium was found to dissolve from kaolinite at pH values beiow about 6.5. Aluminium dissolution increased with decreasing pH and time. When the proportion of dissolved aluminium ions balancing negative surface charge was taken into account, the negative and net negative surface charge on kaolinite was concluded to be largely due to pH independent charge resulting from isomorphous substitution, together with some pH dependent charge due to exposed SiOH sites. If Na+ was the index cation, dissolved aluminium ions from the clay replaced some of the Na+ balancing the negative surface charge. However, when Cs+ was the index cation, less Cs+ balancing the negative surface charge on the clay was replaced by dissolved aluminium. As the concentration of either Na+ or Cs+ was increased, less dissolved aluminium replaced the index cation as a counteraction to the negative surface charge.


2016 ◽  
Author(s):  
James K. Beattie

Abstract. The waterfall effect describes the separation of charge by splashing at the base of a waterfall. Smaller drops that have a net negative charge are created, while larger drops and/or the bulk maintain overall charge neutrality with a net positive charge. Since it was first described by Lenard (1892) the effect has been confirmed many times, but a molecular explanation has not been available. Application of our fluctuation-correlation model of hydrophobic hydration accounts for the negative charge observed at aqueous interfaces with low permittivity materials. The negative surface charge observed in the waterfall effect is created by the preferential adsorption of hydroxide ions generated from the autolysis of water. On splashing, shear forces generate small negative drops from the surface, leaving a positive charge on the remaining large fragment. The waterfall effect is a manifestation of the general phenomenon of the negative charge at the interface between water and hydrophobic surfaces that is created by the preferential adsorption of hydroxide ions.


1987 ◽  
Author(s):  
J Rosing ◽  
H Speijer ◽  
J W P Govers-Riemslag ◽  
R F A Zwaal

It is generally thought that procoagulant phospholipid surfaces that promote the activation of vitamin K-dependent coagulation factors should have a net negative charge in order to promote calcium-dependent binding of the enzymes (FVIIa, FIXa and FXa) and substrates (prothrombin and FX) of the coagulation factor-activating complexes. Two models have been proposed to explain calcium-mediated association of vitamin K-dependent proteins with phospholipid: a) an electrostatic model, in which a positively-charged protein-calcium complex is attracted by a negatively-charged phospholipid surface and b) a chelation model in which a coordination complex is formed between calcium ions, γ-carboxyglutamic acids of the proteins and negatively-charged membrane phospholipids. To study the effect of the electrostatic potential of phospholipid vesicles on their activity in the pro-thrombinase complex the net charge of vesicles was varied by introduction of varying amounts of positively-charged stearylamine in the membrane surface. Introduction of 0-15 mole% stearylamine in phospholipid vesicles that contained 5 mole% phosphatidylseri-ne (PS) hardly affected their activity in prothrombin activation. Electrophoretic analysis showed that vesicles with > 5 mole% stearylamine had a net positive charge. The procoagulant activity of vesicles that contained phosphatidic acid, phosphatidylglyce-rol, phosphatidylinositol or phosphatidyl-glactate (PLac) as acidic phospholipid was much more effected by incorporation of stearylamine. Amounts of stearylamine that compensated the negative charge of acidic phospholipid caused considerable inhibition of the activity of the latter vesicles in prothrombin activation. The comparison of vesicles containing PS and PLac as acidic phospholipid is of special interest. PS and PLac only differ by the presence of NH+ 3-group in the serine moiety of PS. Thus, in spite of the fact that vesicles with PLac are more negatively charged than vesicles with PS, they are less procoagulant. Our results show that a) although procoagulant membranes have to contain acidic phospholipids there is no requirement for a net negative charge, b) the amino group of phosphatidylserine has an important function in the interaction of procoagulant membranes with vitamin K-dependent proteins and c) the chelation model can satisfactorily explain calcium-mediated lipid-protein association.


Soil Research ◽  
1978 ◽  
Vol 16 (3) ◽  
pp. 327 ◽  
Author(s):  
KW Perrott

A series of synthetic amorphous aluminosilicates, hydrous oxides and allophanic soil clays were treated with aqueous extracts of humified clover. The resulting changes in surface charge due to organic treatment were determined by comparing the charge characteristics of these organic treated samples and samples treated with a synthetic mixture of the inorganic components of the humified clover extract. Organic treatment caused a change of net surface charge to more negative values. The change in surface charge varied with the mole ratio Al/(Al+Si) of the aluminosilicate, being largest at low values of Al/(Al+Si). Where the aluminosilicates contain positive charges these are reduced by the organic treatment. This is a major contributor to the alteration of net surface charge in the more aluminous samples. The effect of organic treatment on the charge characteristics of allophanic soil clays was similar to that for the synthetic aluminosilicates of intermediate composition. The inorganic treatments also caused an increase in negative charge, and this is attributed to the neutralization of positive charge by the adsorption of phosphate and the removal of charge-balancing aluminium-hydroxy material. The effect of the organic and inorganic treatments on the positive and negative charge components of amorphous aluminosilicates is discussed in terms of the degree of polymerization of chargebalancing hydroxy-aluminium as envisaged in current models of the structure of amorphous aluminosilicates.


Soil Research ◽  
1984 ◽  
Vol 22 (1) ◽  
pp. 71 ◽  
Author(s):  
GP Gillman

The model of Uehara and Gillman was used to estimate the amounts of permanent surface charge, and variable surface charge at soil pH, in two soils from the high rainfall region of coastal Queensland. For each soil series, samples from virgin rain-forest were compared with soil collected from nearby sugarcane fields. One soil contained relatively large amounts of permanent negative charge (up to 3 m.e. per 100g), and hence was moderately supplied with exchangeable cations, while the other soil was dominated by variable charge components and at soil pH contained sufficient positive charge to reduce exchangeable cations to near zero values, despite the presence of about 1 m.e. per 100 g of permanent negative charge. In the latter the position of soil pH with respect to the point of zero charge is of utmost importance for the development of cation exchange capacity. The effect of adsorbed sulfate on positive charge measurement, and valency of the ion used for negative charge measurement, are briefly discussed.


2007 ◽  
Vol 119 ◽  
pp. 139-142
Author(s):  
Hee Soo Kim ◽  
Ji Chul Jung ◽  
Pil Kim ◽  
Kwan Young Lee ◽  
Sung Ho Yeom ◽  
...  

Mesostructured cellular foam (MCF) silica was synthesized via surfactant templating route. The surface of MCF silica was then modified by grafting 3-aminopropyl-triethoxysilane (APTES) to have the positive charge, and thus, to provide sites for the immobilization of H3PMo12O40 (PMo12). By taking advantage of the overall negative charge of [PMo12O40]3-, PMo12 catalyst was chemically immobilized on the amine-functional group of surface modified MCF (SM-MCF) silica as a charge matching component. It was found that pore structure of MCF silica was maintained even after the surface modification and the subsequent immobilization of PMo12. It was also revealed that PMo12 species were finely and molecularly dispersed on the SM-MCF silica via chemical immobilization.


Soil Research ◽  
1978 ◽  
Vol 16 (1) ◽  
pp. 53 ◽  
Author(s):  
P Rengasamy ◽  
JM Oades

Hydrolysis and polymerization in aluminium nitrate and chromic nitrate solutions with different metal/OH ratios were studied by gel filtration chromatography and ultrafiltration techniques. The characteristics of poly[Al(III)-OH] cations separated by ultrafiltration depended on the molecular weight which was controlled by the OH/Al ratio of the original solution. When the OH/Al ratio was <2.0, the polycations had molecular weight < 50 000, high positive charge and were stable. When the ratio was > 2.0 , the polycations had molecular weight > 100 000, low positive charge and rapidly condensed to gibbsite. Polymerization in chromic nitrate solutions was slow and the separated poly[Cr(III)-OH] cations had low molecular weight (<20000), high positive charge and were stable. The interaction of monomeric and polymeric species of aluminium(III) and chromium(III) with the surfaces of sodium-kaolinite, sodium-bentonite and sodium-illite was studied using hydrolysed nitrate solutions of aluminium and chromium, and separated polycations. The results obtained were consistent with the earlier observations of the iron(III) system, and the behaviour could be explained on the basis of positive charge and probable structure of polycations. The adsorption of aluminium(III) and chromium(III) on clay surfaces from hydrolysed metal ion solutions was related to OH/Al or OH/Cr ratios and pH. The adsorption of polycations was low and related to their positive charge. Maximum adsorption resulted in charge reversal on clays. Addition of the hydrolysed nitrate solutions to clays also caused charge reversal and reduction of negative charge. The adsorption from a mixture of monomers and polymers on bentonite surfaces reduced negative charge markedly due to interlayer formation, while the adsorption of separated polycations in low amounts neutralized the charge on surface hydroxyls and led to the flocculation of clays. The anomalous behaviour of the poly[Al(III)-OH] cations of molecular weight >100 000 could be explained if they consisted of planar sheets, formed from coalesced rings of aluminium octahedra, which crystallized into gibbsite.


1989 ◽  
Vol 257 (6) ◽  
pp. F1079-F1086
Author(s):  
S. W. Weinstein ◽  
S. M. Jones ◽  
R. J. Weinstein

Experiments were performed to test the hypothesis that membrane charge is an important determinant of paracellular pathway ion permselectivity in the proximal tubule. Net negative charge in or around the paracellular pathway should favor cation permeability; net positive charge should favor anion permeability. Therefore compounds such as amiloride and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), capable of changing net membrane charge, should predictably change the diffusive permselectivity of the paracellular pathway to anions and cations. In the first group of experiments amiloride, a compound capable of increasing net positive membrane charge, inhibited cation and enhanced anion diffusive permeability. In a second group of experiments, SITS, a compound capable of increasing net negative membrane charge, inhibited anion and enhanced cation diffusive permeability. The effects of amiloride and SITS were symmetrical; the lumen-to-bath and the bath-to-lumen diffusion potentials were not significantly different in magnitude. In addition these effects were completely and rapidly reversible. Our results suggest that amiloride increases net positive charge, and SITS increases net negative charge within the paracellular pathway. The most likely site for the actions of SITS and amiloride is the tight junction because the effects of the inhibitors were symmetrical. Both compounds act at low concentrations and reversibly such that removal of the inhibitor rapidly reverses its effects. We propose, on the basis of the ease with which these alterations in charge and thus paracellular pathway permselectivity occurred, that the permselectivity of this pathway may not be fixed and constant for any given proximal tubular segment. In fact, permselectivity may vary and thus serve as an important physiological control mechanism for proximal tubular solute and water reabsorption.


Soil Research ◽  
1992 ◽  
Vol 30 (3) ◽  
pp. 331 ◽  
Author(s):  
RL Parfitt

The positive and negative surface charges of some New Zealand soils used for horticulture were measured at different pH values using 0.002 M CaCl2 solutions, Which have a similar ionic strength to soil solutions in New Zealand. The surface negative charge increased with pH for all soil samples including those containing mica and smectite. This behaviour was mainly due to the presence of organic matter and allophane both of which had an appreciable amount of variable negative charge. Allophanic soil B horizons had a higher positive charge than that of the Oxidic soils, which was less than 1 cmol kg-1 at pH 5.


Sign in / Sign up

Export Citation Format

Share Document