Evidence that alteration of charge modifies proximal tubular shunt pathway permselectivity

1989 ◽  
Vol 257 (6) ◽  
pp. F1079-F1086
Author(s):  
S. W. Weinstein ◽  
S. M. Jones ◽  
R. J. Weinstein

Experiments were performed to test the hypothesis that membrane charge is an important determinant of paracellular pathway ion permselectivity in the proximal tubule. Net negative charge in or around the paracellular pathway should favor cation permeability; net positive charge should favor anion permeability. Therefore compounds such as amiloride and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS), capable of changing net membrane charge, should predictably change the diffusive permselectivity of the paracellular pathway to anions and cations. In the first group of experiments amiloride, a compound capable of increasing net positive membrane charge, inhibited cation and enhanced anion diffusive permeability. In a second group of experiments, SITS, a compound capable of increasing net negative membrane charge, inhibited anion and enhanced cation diffusive permeability. The effects of amiloride and SITS were symmetrical; the lumen-to-bath and the bath-to-lumen diffusion potentials were not significantly different in magnitude. In addition these effects were completely and rapidly reversible. Our results suggest that amiloride increases net positive charge, and SITS increases net negative charge within the paracellular pathway. The most likely site for the actions of SITS and amiloride is the tight junction because the effects of the inhibitors were symmetrical. Both compounds act at low concentrations and reversibly such that removal of the inhibitor rapidly reverses its effects. We propose, on the basis of the ease with which these alterations in charge and thus paracellular pathway permselectivity occurred, that the permselectivity of this pathway may not be fixed and constant for any given proximal tubular segment. In fact, permselectivity may vary and thus serve as an important physiological control mechanism for proximal tubular solute and water reabsorption.

2016 ◽  
Author(s):  
James K. Beattie

Abstract. The waterfall effect describes the separation of charge by splashing at the base of a waterfall. Smaller drops that have a net negative charge are created, while larger drops and/or the bulk maintain overall charge neutrality with a net positive charge. Since it was first described by Lenard (1892) the effect has been confirmed many times, but a molecular explanation has not been available. Application of our fluctuation-correlation model of hydrophobic hydration accounts for the negative charge observed at aqueous interfaces with low permittivity materials. The negative surface charge observed in the waterfall effect is created by the preferential adsorption of hydroxide ions generated from the autolysis of water. On splashing, shear forces generate small negative drops from the surface, leaving a positive charge on the remaining large fragment. The waterfall effect is a manifestation of the general phenomenon of the negative charge at the interface between water and hydrophobic surfaces that is created by the preferential adsorption of hydroxide ions.


1987 ◽  
Author(s):  
J Rosing ◽  
H Speijer ◽  
J W P Govers-Riemslag ◽  
R F A Zwaal

It is generally thought that procoagulant phospholipid surfaces that promote the activation of vitamin K-dependent coagulation factors should have a net negative charge in order to promote calcium-dependent binding of the enzymes (FVIIa, FIXa and FXa) and substrates (prothrombin and FX) of the coagulation factor-activating complexes. Two models have been proposed to explain calcium-mediated association of vitamin K-dependent proteins with phospholipid: a) an electrostatic model, in which a positively-charged protein-calcium complex is attracted by a negatively-charged phospholipid surface and b) a chelation model in which a coordination complex is formed between calcium ions, γ-carboxyglutamic acids of the proteins and negatively-charged membrane phospholipids. To study the effect of the electrostatic potential of phospholipid vesicles on their activity in the pro-thrombinase complex the net charge of vesicles was varied by introduction of varying amounts of positively-charged stearylamine in the membrane surface. Introduction of 0-15 mole% stearylamine in phospholipid vesicles that contained 5 mole% phosphatidylseri-ne (PS) hardly affected their activity in prothrombin activation. Electrophoretic analysis showed that vesicles with > 5 mole% stearylamine had a net positive charge. The procoagulant activity of vesicles that contained phosphatidic acid, phosphatidylglyce-rol, phosphatidylinositol or phosphatidyl-glactate (PLac) as acidic phospholipid was much more effected by incorporation of stearylamine. Amounts of stearylamine that compensated the negative charge of acidic phospholipid caused considerable inhibition of the activity of the latter vesicles in prothrombin activation. The comparison of vesicles containing PS and PLac as acidic phospholipid is of special interest. PS and PLac only differ by the presence of NH+ 3-group in the serine moiety of PS. Thus, in spite of the fact that vesicles with PLac are more negatively charged than vesicles with PS, they are less procoagulant. Our results show that a) although procoagulant membranes have to contain acidic phospholipids there is no requirement for a net negative charge, b) the amino group of phosphatidylserine has an important function in the interaction of procoagulant membranes with vitamin K-dependent proteins and c) the chelation model can satisfactorily explain calcium-mediated lipid-protein association.


1995 ◽  
Vol 105 (1) ◽  
pp. 21-47 ◽  
Author(s):  
M L Jennings

One of the modes of action of the red blood cell anion transport protein is the electrically silent net exchange of 1 Cl- for 1 SO4= and 1 H+. Net SO4(=)-Cl- exchange is accelerated by low pH or by conversion of the side chain of glutamate 681 into an alcohol by treatment of intact cells with Woodward's reagent K (WRK) and BH4-. The studies described here were performed to characterize the electrical properties of net SO4(=)-Cl- exchange in cells modified with WRK/BH4-. The SO4= conductance measured in 100 mM SO4= medium is smaller in modified cells than in control cells. However, the efflux of [35S] SO4= into a 150-mM KCl medium is 80-fold larger in modified cells than in control cells and is inhibited 99% by 10 microM H2DIDS. No detectable H+ flux is associated with SO4(=)-Cl- exchange in modified cells. In the presence of gramicidin to increase the cation permeability, the stoichiometry of SO4(=)-Cl- exchange is not distinguishable from 1:1. In modified cells loaded with SO4=, the valinomycin-mediated efflux of 86Rb+ into an Na-gluconate medium is immediately stimulated by the addition of 5 mM extracellular Cl-. Therefore, SO4(=)-Cl- exchange in modified cells causes an outward movement of negative charge, as expected for an obligatory 1:1 SO4(=)-Cl- exchange. This is the first example of an obligatory, electrogenic exchange process in band 3 and demonstrates that the coupling between influx and efflux does not require that the overall exchange be electrically neutral. The effects of membrane potential on SO4(=)-SO4= exchange and SO4(=)-Cl- exchange in modified cells are consistent with a model in which nearly a full net positive charge moves inward through the transmembrane field during the inward Cl- translocation event, and a small net negative charge moves with SO4= during the SO4= translocation event. This result suggests that, in normal cells, the negative charge on Glu 681 traverses most of the transmembrane electric field, accompanied by Cl- and the equivalent of two protein-bound positive charges.


Clay Minerals ◽  
2000 ◽  
Vol 35 (4) ◽  
pp. 625-634 ◽  
Author(s):  
P. Komadel ◽  
J. Madejová ◽  
D. A. Laird ◽  
Y. Xia ◽  
J. W. Stucki

AbstractGriffithite is a trioctahedral smectite with dioctahedral domains, found in the <2 μm fraction of weathered basic rock from Griffith Park, California, USA. Crystalline admixtures (albite, calcite, quartz and maghemite) are concentrated in the 0.2 – 2 μm fraction, while the <0.06 μm fraction contains only trace amounts of other minerals. Griffithite is primarily an Fe–rich saponite with negative charge located in the tetrahedral sheets. The octahedral occupancy is ∼91%, and ∼26% of the octahedra contain trivalent atoms imparting a net positive charge to the octahedral sheet. Medium levels of Fe(III) reduction in griffithite, up to 60% of total Fe, can be achieved by adding solid sodium dithionite to clay dispersions in a citrate–bicarbonate buffer. By contrast >90% reduction of Fe(III) to Fe(II) is achieved in nontronites using the same method. The lower reducibility of Fe(III) in griffithite relative to nontronites may be due to structural differences between griffithite and nontronites, such as a more negative tetrahedral charge and a positive octahedral charge.


1996 ◽  
Vol 42 (7) ◽  
pp. 621-627 ◽  
Author(s):  
Y. E. Collins ◽  
G. Stotzky

Bacillus subtilis and Agrobacterium radiobacter remained viable when exposed to Ni (1 × 10−4 M; ionic strength (μ) = 3 × 10−4) at pH values known to cause a change of the net negative charge of the cells to a net positive charge (charge reversal). The gross morphology, as determined by scanning electron microscopy, of these and other bacteria and of Saccharomyces cerevisiae was not altered in the presence of Ni, Cu, and Zn (1 × 10−4 M; μ = 3 × 10−4), which caused a charge reversal at pH values between 6.0 and 9.0. Similar results were obtained in the presence of Na and Mg, which did not cause charge reversal at the same μ and pH values. These results confirmed that cells remain viable when their surface charge is changed in the presence of some heavy metals at high pH values.Key words: heavy metals, electrokinetic properties, survival of bacteria.


1978 ◽  
Vol 77 (3) ◽  
pp. R35 ◽  
Author(s):  
MG Farquhar

Cells dissociated from rat anterior pituitaries were incubated with native or cationized ferritin (CF) to trace the fate of surface membrane. Native ferritin, which did not bind to the cell surface, was taken up in small amounts by bulk-phase endocytosis and was found increasingly (over 1-2 h) concentrated in lysosomes. CF at 100-fold less concentrations bound rapidly to the cell membrane, was taken up by endocytosis in far greater amounts, and within 15-60 min was found increasingly within multiple stacked Golgi cisternae, around forming secretion granules, and within elements of GERL, as well as within lysosomes. The findings demonstrate that the fate of the tracer--and presumably also that of the surface membrane--varies with the same molecule differing only in net charge: vesicles carrying anionic ferritin (net negative charge) fuse only with elements of the lysosomal system whereas those carrying CF (net positive charge) can fuse not only with elements of the lysosomal system, but also with elements along the secretory pathway (Golgi cisternae and condensing granules) as well.


Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2663
Author(s):  
Hyun Jun Woo ◽  
Ji Yeong Yang ◽  
Pyeongjae Lee ◽  
Jong-Bae Kim ◽  
Sa-Hyun Kim

Helicobacter pylori (H. pylori) produces urease in order to improve its settlement and growth in the human gastric epithelium. Urease inhibitors likely represent potentially powerful therapeutics for treating H. pylori; however, their instability and toxicity have proven problematic in human clinical trials. In this study, we investigate the ability of a natural compound extracted from Zingiber zerumbet Smith, zerumbone, to inhibit the urease activity of H. pylori by formation of urease dimers, trimers, or tetramers. As an oxygen atom possesses stronger electronegativity than the first carbon atom bonded to it, in the zerumbone structure, the neighboring second carbon atom shows a relatively negative charge (δ−) and the next carbon atom shows a positive charge (δ+), sequentially. Due to this electrical gradient, it is possible that H. pylori urease with its negative charges (such as thiol radicals) might bind to the β-position carbon of zerumbone. Our results show that zerumbone dimerized, trimerized, or tetramerized with both H. pylori urease A and urease B molecules, and that this formation of complex inhibited H. pylori urease activity. Although zerumbone did not affect either gene transcription or the protein expression of urease A and urease B, our study demonstrated that zerumbone could effectively dimerize with both urease molecules and caused significant functional inhibition of urease activity. In short, our findings suggest that zerumbone may be an effective H. pylori urease inhibitor that may be suitable for therapeutic use in humans.


Proceedings ◽  
2020 ◽  
Vol 60 (1) ◽  
pp. 50
Author(s):  
Vladimir Generalov ◽  
Olga Naumova ◽  
Dmitry Shcherbakov ◽  
Alexander Safatov ◽  
Boris Zaitsev ◽  
...  

The presented results indicate virus-like particles of the coronavirus (CVP) using a nanowire (NW) biosensor based on silicon-on-insulator technology. In the experiment, we used suspensions of CVP and of specific antibodies to the virus. Measurements of the current value of the field-effect transistor before and after the introduction of the CVP on the surface of the nanowire were performed. Results showed antibody + CVP complexes on the phase section with the surface of the nanowire modulate the current of the field-effect transistor; CVP has an electrically positive charge on the phase section “nanowire surface-viral suspension»; antibody + CVP complexes have an electrically negative charge on the phase section “nanowire surface-viral suspension”; the sensitivity of the biosensor is made up of 10−18 M; the time display was 200–300 s.


1987 ◽  
Vol 252 (1) ◽  
pp. F11-F18 ◽  
Author(s):  
S. Sasaki ◽  
T. Shiigai ◽  
N. Yoshiyama ◽  
J. Takeuchi

To clarify the mechanism(s) of HCO3- (or related base) transport across the basolateral membrane, rabbit proximal straight tubules were perfused in vitro, and intracellular pH (pHi) and Na+ activity (aiNa) were measured by double-barreled ion-selective microelectrodes. Lowering bath HCO3- from 25 to 5 mM at constant PCO2 depolarized basolateral membrane potential (Vbl), and reduced pHi. Most of these changes were inhibited by adding 1 mM 4-acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid (SITS) to the bath. Total replacement of bath Na+ with choline also depolarized Vbl and reduced pHi, and these changes were also inhibited by SITS. Reduction in aiNa was observed when bath HCO3- was lowered. Taken together, these findings suggest that HCO3- exists the basolateral membrane with Na+ and negative charge. Calculation of the electrochemical driving forces suggests that the stoichiometry of HCO3-/Na+ must be larger than two for maintaining HCO3- efflux. Total replacement of bath Cl- with isethionate depolarized Vbl gradually and increased pHi slightly, implying the existence of a Cl(-)-related HCO3- exit mechanism. The rate of decrease in pHi induced by lowering bath HCO3- was slightly reduced (20%) by the absence of bath Cl-. Therefore, the importance of Cl(-)-related HCO3- transport is small relative to total basolateral HCO3- exit. Accordingly, these data suggest that most of HCO3- exits the basolateral membrane through the rheogenic Na+/HCO3- cotransport mechanism with a stoichiometry of HCO3-/Na+ of more than two.


1953 ◽  
Vol 6 (3) ◽  
pp. 278 ◽  
Author(s):  
DJ O'Connor ◽  
AS Buchanan

Simultaneous ζ-potential and surface conductivity measurements have been made on three samples of cassiterite (SnO2) in water, in solutions of HCl, alkalis, inorganic salts, and the flotation collector reagent sodium cetyl sulphate. It is probable that the intrinsic surface charge of cassiterite in water is negative and that it is due to surface ionization as a very weak acid. Two of the solids possessed a negative surface whilst the positive charge of the third seemed to be due to ionization of a strongly basic impurity. Those samples having a negative charge showed little reaction with sodium cetyl sulphate alone, but appreciable adsorption of cetyl sulphate ion took place in acid solution. On the other hand, the sample with the positive surface reacted with cetyl sulphate ion even in the absence of acid. In all cases adsorption of cetyl sulphate was completely reversible.


Sign in / Sign up

Export Citation Format

Share Document