Surface charge on kaolinites in aqueous suspension

Soil Research ◽  
1976 ◽  
Vol 14 (2) ◽  
pp. 197 ◽  
Author(s):  
MDA Bolland ◽  
AM Posner ◽  
JP Quirk

The surface charge of several natural kaolinites was measured in the pH range 3-10 using an exchange technique. The positive charge was found to increase with decreasing pH and sometimes to increase with increasing ionic strength; it occurred on the kaolinites at pH values as high as 9 and 10 and was particularly evident at high ionic strengths. The positive surface charge on kaolinites is thought to be due to exposed alumina such as is found on oxide surfaces. Aluminium was found to dissolve from kaolinite at pH values beiow about 6.5. Aluminium dissolution increased with decreasing pH and time. When the proportion of dissolved aluminium ions balancing negative surface charge was taken into account, the negative and net negative surface charge on kaolinite was concluded to be largely due to pH independent charge resulting from isomorphous substitution, together with some pH dependent charge due to exposed SiOH sites. If Na+ was the index cation, dissolved aluminium ions from the clay replaced some of the Na+ balancing the negative surface charge. However, when Cs+ was the index cation, less Cs+ balancing the negative surface charge on the clay was replaced by dissolved aluminium. As the concentration of either Na+ or Cs+ was increased, less dissolved aluminium replaced the index cation as a counteraction to the negative surface charge.

Author(s):  
B. L. Dixon Northern ◽  
Y. L. Chen ◽  
J.N. Israelachvili ◽  
J.A.N. Zasadzinski

Atomic Force Microscope (AFM), is the newest, and potentially most powerful of the scanning probe microscopes. The (AFM) is capable of resolutions approaching atomic dimensions on ideal surfaces. One of the favorite such surfaces is that of mica. Muscovite mica has a platelike structure consisting of an octahedral alumina sheet sandwiched by two tetrahedral silicate sheets. As a result of this structure, mica cleaves readily along a plane leaving a molecularly smooth surface. Because of the isomorphous substitution of the tetravalent silicon by trivalent aluminium, mica has an excess negative surface charge.This negative surface charge of 2.1-1014 charges per cm2 is neutralized by an equal number of positive monovalent ions, mainly potassium ions. The ion-exchangable surface ions of mica, in aqueous solution, can be readily replaced by other monovalent or multivalent ions. This ion exchange alters the surface of the mica. We then follow these changes by imaging with the AFM in air.


1996 ◽  
Vol 34 (5-6) ◽  
pp. 309-316 ◽  
Author(s):  
X. S. Jia ◽  
Herbert H. P. Fang ◽  
H. Furumai

Changes of surface charge and extracellular polymer (ECP) content were investigated in batch experiments for three anaerobic sludges, each of which had been enriched at 35°C and pH 639-7.3 for more than 40 batches using propionate, butyrate and glucose, individually, as the sole substrate. Results showed that both ECP and the negative surface charge were dependent on the growth phase of microorganisms. They increased at the beginning of all batches when the microorganisms were in the prolific-growth phase, having high substrate concentration and food-to-microorganisms ratio. Both later gradually returned to their initial levels when the microorganisms were in the declined-growth phase, as the substrate became depleted. The negative surface charge increased linearly with the total-ECP content in all series with slopes of 0.0187, 0.0212 and 0.0157 meq/mg-total-ECP for sludge degrading propionate, butyrate and glucose, respectively. The change of surface charge for the first two sludges was mainly due to the increase of proteinaceous fraction of ECP; but, for glucose-degrading sludge, that could be due to the increases of both proteinaceous and carbohydrate fractions of ECP. The negative-charged nature of anaerobic sludge implies that cations should be able to promote granulation of anaerobic sludge.


Cosmetics ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 45
Author(s):  
Eduardo Guzmán ◽  
Laura Fernández-Peña ◽  
Lorenzo Rossi ◽  
Mathieu Bouvier ◽  
Francisco Ortega ◽  
...  

This work analyzes the dispersion of two highly hydrophobic actives, (9Z)-N-(1,3-dihydroxyoctadecan-2-yl)octadec-9-enamide (ceramidelike molecule) and 2,6-diamino-4-(piperidin-1-yl)pyrimidine 1-oxide (minoxidil), using oil-in-water nanoemulsions with the aim of preparing stable and safe aqueous-based formulations that can be exploited for enhancing the penetration of active compounds through cosmetic substrates. Stable nanoemulsions with a droplet size in the nanometric range (around 200 nm) and a negative surface charge were prepared. It was possible to prepare formulations containing up to 2 w/w% of ceramide-like molecules and more than 10 w/w% of minoxidil incorporated within the oil droplets. This emulsions evidenced a good long-term stability, without any apparent modification for several weeks. Despite the fact that this work is limited to optimize the incorporation of the actives within the nanoemulsion-like formulations, it demonstrated that nanoemulsions should be considered as a very promising tool for enhancing the distribution and availability of hydrophobic molecules with technological interest.


MRS Advances ◽  
2016 ◽  
Vol 1 (46) ◽  
pp. 3121-3126
Author(s):  
Sunith Varghese ◽  
Charuksha Walgama ◽  
Mark Wilkins ◽  
Sadagopan Krishnan ◽  
Kaan Kalkan

ABSTRACTThe present work investigates sol-gel synthesized vanadium oxyhydrate (V2O5·H2O) nanowires decorated with Au nanoparticles as potential photolytic H2 generators. As determined by UV photoelectron and optical spectroscopies, the conduction band edge of V2O5·H2O lies 0.6 eV below standard H+ reduction potential, implying no H2 can be generated. On the contrary, as measured by gas chromatography, our nanoconjugates yield reproducible light-to-hydrogen conversion efficiency of 5.3%, for the first hour of photolysis under 470 nm excitation. To explain the observed hydrogen reduction, we have hypothesized the vanadia electron energy levels are raised by some negative surface charge. With the objective of validating this hypothesis, we have performed cyclic current-voltage measurements. The derived conduction and valence band edge energies are not only consistent with the optical band gaps, but also validate the hypothesized energy increase by 1.6 eV, respectively. The negative surface charge is also corroborated by the ζ-potential. Based on the measured pH of 2.4, we attribute the negative surface charge to Lewis acid nature of the nanowires, establishing dative bonding with OH−. The present work establishes the importance of surface charge in photoelectrochemical reactions, where it can be instrumental and enabling in photolytic fuel production.


Soil Research ◽  
2007 ◽  
Vol 45 (6) ◽  
pp. 465 ◽  
Author(s):  
Jing Liang ◽  
Ren-kou Xu ◽  
Diwakar Tiwari ◽  
An-zhen Zhao

The effect of arsenate on adsorption of Zn(II) in 3 variable charge soils (Hyper-Rhodic Ferralsol, Rhodic Ferralsol, and Haplic Acrisol) and the desorption of pre-adsorbed Zn(II) in the presence of arsenate were investigated in this study. Results showed that the presence of arsenate led to an increase in both the adsorption and desorption of Zn(II) in these variable charge soils. It was also suggested that the enhanced Zn(II) adsorption by arsenate was mainly due to the increase in negative surface charge of the soils induced by the specific adsorption of arsenate, and the increase in electrostatically adsorbed Zn(II) was responsible for the increase in the desorption of Zn(II). The effect of arsenate on Zn(II) adsorption primarily depends on the initial concentration of arsenate and Zn(II), the system pH, and the nature of soils. The enhanced adsorption of Zn(II) increased with the increase in the initial concentration of arsenate and the amount of arsenate adsorbed by the soils. The presence of arsenate decreased the zeta potential of soil suspensions and soil IEP and thus shifted the adsorption edge of Zn(II) to a lower pH region. The effect of arsenate on Zn(II) adsorption in these 3 soils followed the order Hyper-Rhodic Ferralsol > Rhodic Ferralsol > Haplic Acrisol, which was consistent to the contents of iron oxides in these soils and the amount of arsenate adsorbed by the soils.


2013 ◽  
Vol 11 (3) ◽  
pp. 465-472 ◽  
Author(s):  
Kamilla M. S. Hansen ◽  
Hans-Jørgen Albrechtsen ◽  
Henrik R. Andersen

In order to identify the optimal pH range for chlorinated swimming pools, the formation of trihalomethanes, haloacetonitriles and trichloramine was investigated in the pH-range 6.5–7.5 in batch experiments. An artificial body fluid analogue was used to simulate bather load as the precursor for by-products. The chlorine-to-precursor ratio used in the batch experiments influenced the amounts of by-products formed, but regardless of the ratio the same trends in the effect of pH were observed. Trihalomethane formation was reduced by decreasing pH, but haloacetonitrile and trichloramine formation increased. To evaluate the significance of the increase and decrease of the investigated organic by-products at the different pH values, the genotoxicity was calculated based on literature values. The calculated genotoxicity was approximately at the same level in the pH range 6.8–7.5 and increased when pH was 6.7 or lower. An optimal pH range for by-products formation in swimming pools was identified at pH 7.0–7.2. In the wider pH range (pH 6.8–7.5), the effect on by-product formation was negligible. Swimming pools should never be maintained at lower pH than 6.8 since formation of both haloacetonitriles and trichloramine increase significantly below this value.


2016 ◽  
Author(s):  
James K. Beattie

Abstract. The waterfall effect describes the separation of charge by splashing at the base of a waterfall. Smaller drops that have a net negative charge are created, while larger drops and/or the bulk maintain overall charge neutrality with a net positive charge. Since it was first described by Lenard (1892) the effect has been confirmed many times, but a molecular explanation has not been available. Application of our fluctuation-correlation model of hydrophobic hydration accounts for the negative charge observed at aqueous interfaces with low permittivity materials. The negative surface charge observed in the waterfall effect is created by the preferential adsorption of hydroxide ions generated from the autolysis of water. On splashing, shear forces generate small negative drops from the surface, leaving a positive charge on the remaining large fragment. The waterfall effect is a manifestation of the general phenomenon of the negative charge at the interface between water and hydrophobic surfaces that is created by the preferential adsorption of hydroxide ions.


Minerals ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 371 ◽  
Author(s):  
Ying Gao ◽  
Yuexin Han ◽  
Wenbo Li

The flotation behaviors of diatomite and albite using dodecylamine (DDA) as a collector were investigated and compared. The pure mineral flotation results indicate that the flotability difference between albite and diatomite is above 87% at pH 5.5 to 10.5. The recovery of albite improves with increasing DDA dosage at pH 5.5 to 10.5. In the same pH range, diatomite has weaker flotability than albite, particularly in alkaline pH pulp. Zeta potential measurements indicate that diatomite has a higher negative surface charge than albite at pH 7 to 12, DDA interacts strongly with albite and weakly with diatomite. Thus, DDA preferentially absorbs on albite surface rather than diatomite under alkaline conditions. Fourier transform infrared spectra (FTIR) indicate that the amount of DDA adsorbed to albite is greater than that adsorbed to diatomite, under the same conditions. The adsorption of DDA on the surface of diatomite is investigated by using atomic force microscopy (AFM) for the first time. The adsorption of the collector DDA on the surface of albite per unit area is greater than that on diatomite. This accounts for the lower recovery of diatomite than that of albite.


Sign in / Sign up

Export Citation Format

Share Document