Glomerular mesangial cell adhesion to fibrinogen is mediated by αvβ3 integrin

2004 ◽  
Vol 82 (5) ◽  
pp. 597-601 ◽  
Author(s):  
Edgar G Fischer

The biological behavior of glomerular mesangial cells is thought to play a critical role in human and experimental forms of mesangioproliferative glomerulonephritis. In these diseases, mesangial cells proliferate and produce increased amounts of extracellular matrix proteins, which can lead to glomerulosclerosis and end-stage renal disease. Mesangial cells interact with extracellular matrix proteins through integrin-mediated cell adhesion. Fibrinogen as a plasma-derived protein is known to be deposited in the mesangium of kidneys affected by mesangioproliferative glomerulonephritis. The adhesive interactions between fibrinogen and mesangial cells, however, have not been reported. Results in this work show that mesangial cells adhere to immobilized fibrinogen in an integrin-dependent fashion. This process was inhibited by the αvβ3-selective peptide cyclo-RGDFV and the monoclonal anti-β3 integrin chain antibody F11. Ca2+ ions are a known strong inhibitor of the fibrinogen-αvβ3 interaction, and mesangial cell adhesion did not occur when Ca2+ was the only divalent cation present. Therefore, mesangial cell adhesion to fibrinogen is mediated by αvβ3 integrin, and divalent cations have a fundamental role in regulating this process.Key words: glomerular mesangial cells, adhesion, extracellular matrix, fibrinogen, integrins, αvβ3.

1991 ◽  
Vol 261 (3) ◽  
pp. F488-F494 ◽  
Author(s):  
L. A. Bruggeman ◽  
E. A. Horigan ◽  
S. Horikoshi ◽  
P. E. Ray ◽  
P. E. Klotman

The vasoconstrictor eicosanoid thromboxane plays an important role in the pathogenesis of several renal diseases. As an autacoid, its local release alters blood flow and induces platelet aggregation. We report a direct stimulatory effect of thromboxane on extracellular matrix protein production and gene expression in vitro. Treatment of two cell types, differentiated mouse teratocarcinoma cells (F9+) and human glomerular mesangial cells, with two different thromboxane analogues resulted in increased production of components of the extracellular matrix including fibronectin and the basement membrane proteins laminin and type IV collagen. These responses to thromboxane were not the result of a mitogenic effect of thromboxane nor the result of an increase in total cellular protein. The increased production of extracellular matrix proteins was, at least in part, due to an increase in the steady-state level of mRNA for these genes. Furthermore, the effect of thromboxane was markedly inhibited by cotreatment with a thromboxane-receptor antagonist. These results suggest a new potential role for thromboxane as a mediator of the sclerotic and fibrotic responses to injury.


2015 ◽  
Vol 309 (3) ◽  
pp. F204-F215 ◽  
Author(s):  
Marimuthu Subathra ◽  
Midhun Korrapati ◽  
Lauren A. Howell ◽  
John M. Arthur ◽  
James A. Shayman ◽  
...  

Glycosphingolipids (GSLs) play a role in insulin resistance and diabetes, but their role in diabetic nephropathy (DN) has received limited attention. We used 9- and 17-wk-old nondiabetic db/ m and diabetic db/ db mice to examine the role of GSLs in DN. Cerebrosides or monoglycosylated GSLs [hexosylceramides (HexCers); glucosyl- and galactosylceramides] and lactosylceramide (LacCers) were elevated in db/ db mouse kidney cortices, specifically in glomeruli, and also in urine. In our recent paper (25), we observed that the kidneys exhibited glomerular hypertrophy and proximal tubular vacuolization and increased fibrosis markers at these time points. Mesangial cells contribute to hyperglycemia-induced glomerular hypertrophy in DN. Hyperglycemic culture conditions, similar to that present in diabetes, were sufficient to elevate mesangial cell HexCers and increase markers of fibrosis, extracellular matrix proteins, and cellular hypertrophy. Inhibition of glucosylceramide synthase or lowering glucose levels decreased markers of fibrosis and extracellular matrix proteins and reversed mesangial cell hypertrophy. Hyperglycemia increased phosphorylated (p)SMAD3 and pAkt levels and reduced phosphatase and tensin homolog levels, which were reversed with glucosylceramide synthase inhibition. These data suggest that inhibition of glucosylceramide synthase reversed mesangial cell hypertrophy through decreased pAkt and pSmad3 and increased pathways responsible for protein degradation. Importantly, urinary GSL levels were higher in patients with DN compared with healthy control subjects, implicating a role for these lipids in human DN. Thus, hyperglycemia in type II diabetes leads to renal dysfunction at least in part by inducing accumulation of HexCers and LacCers in mesangial cells, resulting in fibrosis, extracellular matrix production, and hypertrophy.


1991 ◽  
Vol 260 (2) ◽  
pp. F185-F191 ◽  
Author(s):  
S. H. Ayo ◽  
R. A. Radnik ◽  
W. F. Glass ◽  
J. A. Garoni ◽  
E. R. Rampt ◽  
...  

Nodular expansion of glomerular mesangium with increased amounts of extracellular matrix (ECM) material is pathognomic of diabetic nephropathy. The precise mechanisms involved in this accumulation are unknown. Recently, we reported using a solid-phase enzyme-linked immunosorbent assay (ELISA) technique that glomerular mesangial cells, the principal cell type residing in glomerular mesangium, accumulate 50–60% more fibronectin (FN), laminin (LM), and type IV collagen (T-IV) when cultured in medium containing high glucose (30 mM) (S. H. Ayo, R. A. Rodnik, J. Garoni, W. F. Glass II, and J. I. Kreiberg. Am. J. Pathol. 136: 1339-1348, 1990). ECM assembly is controlled by its rate of synthesis and degradation, as well as its binding and rate of incorporation into the ECM. To elucidate the mechanisms involved, pulse-chase experiments were designed to estimate ECM protein synthesis from the incorporation of Trans-35S [( 35S]methionine, [35S]cysteine) into immunoprecipitated FN, LM, and T-IV. mRNA levels were examined, and degradation rates were estimated from the disappearance of radioactivity from matrix proteins in mesangial cells previously incubated with Trans-35S. One week of growth in 30 mM glucose resulted in approximately 40–50% increase in the synthesis of all three matrix proteins compared with 10 mM glucose-grown cells. This was accompanied by a significant increase in the transcripts for all three matrix proteins (approximately twofold). The specific activity of the radiolabel in trichloroacetic acid-precipitable cell protein showed no difference between cells grown in 10 or 30 mM glucose, indicating that total protein synthesis was unchanged. After 1 wk, the rate of FN, LM, and T-IV collagen degradation was unchanged.(ABSTRACT TRUNCATED AT 250 WORDS)


Blood ◽  
1993 ◽  
Vol 82 (10) ◽  
pp. 3125-3132 ◽  
Author(s):  
LJ Bendall ◽  
K Kortlepel ◽  
DJ Gottlieb

Abstract Acute myeloid leukemia (AML) cells respond to exogenous stimulation from myeloid growth factors that may be secreted by cells of the bone marrow (BM) stroma and retained by glycosaminoglycans in the extracellular matrix. We have analyzed the capacity of malignant cells from patients with AML to maintain close proximity to sites of growth factor production and retention by binding to BM stromal elements, including fibroblasts and extracellular matrix proteins. Leukemic cells from all cases of AML adhered to BM fibroblast (BMF) monolayers (mean +/- standard error [SE] percentage binding, 30.9% +/- 2.5%; n = 23) and to fibronectin and laminin (mean +/- SE percentage binding, 28.0% +/- 4.1% [n = 11] and 21.5% +/- 2.3% [n = 8], respectively). Binding to bovine and human collagen type 1, vitronectin, hyaluronic acid, and albumin was minimal. Analysis of binding mechanisms indicated that very late antigen-4 (VLA-4) and VLA-5 were responsible for AML cell binding to fibronectin. Binding to laminin could be inhibited by antibody to the alpha chain of VLA-6. In contrast, AML cell adhesion to BMF monolayers was not impaired by blocking antibodies to either beta 1 or beta 2 integrins used alone, although the combination of anti-CD11/CD18 and anti-VLA-4 inhibited binding in more than 50% of cases. When anti- VLA-5 was added in these cases, mean +/- SE inhibition of binding of 45.5% +/- 9.1% (P < .001) was observed. Binding of AML cells to extracellular matrix proteins fibronectin and laminin is predominantly beta 1-integrin-dependent, but AML cell adhesion to BMF relies on the simultaneous involvement of beta 1 and beta 2 integrins as well as other currently unrecognized ligands.


Sign in / Sign up

Export Citation Format

Share Document