The effects of cold-temperature stress on gene expression in maize

1987 ◽  
Vol 65 (2) ◽  
pp. 112-119 ◽  
Author(s):  
Reza K. Yacoob ◽  
W. Gary Filion

A rapid decrease from the 28 °C incubation temperature of 5-day-old maize seedlings induced a response recorded as an altered synthesis of several polypeptides. The maximum response occurred at 4 °C and included cold-shock proteins with relative molecular masses of 94, 92, 90, 73, 70, 54, 50, 44, 38, 34, 33, 32, 24, 20, and 14 kilodaltons (kDa). Western bolt analysis (probed with polyclonal antibodies against maize heat-shock proteins) and fluorograms prepared from one-dimensional gel electrophoresis of maize heat-shock proteins revealed differences between the cold-induced polypeptides and the maize heat-shock proteins. The abundance of low molecular weight polypeptides and the absence of a marked depression in normal protein synthesis were the most noted differences from the heat-shock response. The cold-shock response, which was induced by as little as a 3 °C reduction in temperature, showed some transitory proteins, was separate from an acclimation response, and lasted up to 18 h (after returning the seedlings to 28 °C) before the normal protein synthetic pattern returned. Seedlings allowed to recover from a 4 °C shock for 4 h at 28 °C showed synthesis of a 250-kDa polypeptide, which lasted less than 2 h and was completely inhibited by actinomycin D.

1988 ◽  
Vol 34 (10) ◽  
pp. 1148-1153 ◽  
Author(s):  
Michael W. Lema ◽  
Arnold Brown ◽  
Charles A. Butler ◽  
Paul S. Hoffman

The heat-shock response of Legionella pneumophila was examined by radiolabelling bacterial cell proteins with [35S]methionine following a temperature shift from 30 to 42 °C. Five heat-shock proteins were identified as having molecular masses of 17, 60, 70, 78, and 85 kilodaltons (kDa). The 85- and 60-kDa proteins were equally distributed between supernatant and pellet fractions following ultracentrifugation at 100 000 × g, the 70- and 78-kDa proteins were found primarily in the supernatant, and the 17-kDa protein was found primarily in the pellet. Synthesis of subsets of the heat-shock proteins could be stimulated by novobiocin, patulin, or puromycin. Ethanol, an effector of the heat-shock response in other microorganisms, had little effect on L. pneumophila, even at the highest concentration tolerated by the bacterial cells (1.9%). Finally, the 60-kDa heat-shock protein of L. pneumophila was immunologically cross-reactive with a polyclonal antibody prepared to the Escherichia coli groEL protein. However, a mouse monoclonal antibody reactive with the 60-kDa protein of all legionellae tested did not cross-react with the E. coli groEL protein, suggesting that the Legionella 60-kDa protein contains common and unique epitopes.


1986 ◽  
Vol 28 (6) ◽  
pp. 1125-1131 ◽  
Author(s):  
Reza K. Yacoob ◽  
W. Gary Filion

The protein synthetic response to a heat (28–41 °C) and a cold (28–4 °C) shock was studied in seedlings from 10 cultivars of maize with varying levels of cold tolerance. This response was compared by fluorography of one-dimensional polyacrylamide gels and immunoblot analysis. We utilized polyclonal antibodies against the 18 000 dalton (Da) heat-shock protein and the 73 000–89 000 Da heat-shock protein complex from Oh43 maize seedlings to ascertain antigenic similarity of these polypeptides. The heat-shock response varied in the numbers and relative molecular masses of the heat-shock proteins. Only three polypeptides appeared to be conserved across cultivars: a 93 000, 71 000, and 18 000 Da polypeptide. The cold-shock response varied from none to a dramatically altered pattern in a few cultivars. Thus, the heat- and cold-shock responses in these cultivars of corn differ in the types of polypeptides that are induced. All cultivars showed varying degrees of cross-reactivity when probed with the anti 18 000 Da heat-shock protein antibody. The inbred lines appeared to respond more to a cold shock than the hybrid lines but there was little relationship between the cold tolerance and the induction of a cold-shock response. Two of the cultivars demonstrated unique binding to a higher molecular weight polypeptide under control (28 °C) conditions. These data suggest that within species variation in both number and relative molecular weight of thermal stress polypeptides (heat and cold) is a function of genotype.Key words: heat shock, cold shock, cold tolerance, maize, gene expression.


1987 ◽  
Vol 7 (1) ◽  
pp. 244-250
Author(s):  
D Y Shin ◽  
K Matsumoto ◽  
H Iida ◽  
I Uno ◽  
T Ishikawa

When Saccharomyces cerevisiae cells grown at 23 degrees C were transferred to 36 degrees C, they initiated synthesis of heat shock proteins, acquired thermotolerance to a lethal heat treatment given after the temperature shift, and arrested their growth transiently at the G1 phase of the cell division cycle. The bcy1 mutant which resulted in production of cyclic AMP (cAMP)-independent protein kinase did not synthesize the three heat shock proteins hsp72A, hsp72B, and hsp41 after the temperature shift. The bcy1 cells failed to acquire thermotolerance to the lethal heat treatment and were not arrested at the G1 phase after the temperature shift. In contrast, the cyr1-2 mutant, which produced a low level of cAMP, constitutively produced three heat shock proteins and four other proteins without the temperature shift and was resistant to the lethal heat treatment. The results suggest that a decrease in the level of cAMP-dependent protein phosphorylation results in the heat shock response, including elevated synthesis of three heat shock proteins, acquisition of thermotolerance, and transient arrest of the cell cycle.


Genome ◽  
1991 ◽  
Vol 34 (6) ◽  
pp. 940-943 ◽  
Author(s):  
Daryl J. Somers ◽  
Randal W. Giroux ◽  
W. Gary Filion

Opuntia ficus indica roots grown hydroponically at 20 or 30 °C were subjected to a range of heat-shock temperatures as high as 50 °C for 2 h. Roots grown at 30 °C sustained a greater level of total protein synthesis than did 20 °C-grown roots following heat-shock treatments ≥ 45 °C. The 30 °C-grown roots synthesized 31 families of heat-shock proteins between 38 and 47 °C in comparison with 20 °C-grown roots, which synthesized 19 families of heat-shock proteins at 45 °C. In both groups of roots, the heat-shock response was dominated equally by the 71–75 and a 62 kDa heat-shock protein families. In addition, the 20 °C-grown roots expressed 11 families of cold-shock proteins following 2 h at 4 °C, five of which had similar relative molecular masses to heat-shock protein families. There were numerous qualitative differences in the heat shock protein profiles between the roots grown at 20 and 30 °C; the 30 °C-grown roots expressed several unique heat shock protein families.Key words: heat-shock protein(s), cactus, thermal stress, acclimation.


1999 ◽  
Vol 2 (2) ◽  
pp. 175-180 ◽  
Author(s):  
Sangita Phadtare ◽  
Janivette Alsina ◽  
Masayori Inouye

1985 ◽  
Vol 63 (7) ◽  
pp. 711-722 ◽  
Author(s):  
David Rodenhiser ◽  
Jack H. Jung ◽  
Burr G. Atkinson

Mammalian (human, mouse, and rabbit) white blood cells (lymphocytes) maintained in culture respond to a brief incubation at an elevated temperature (at or above 41 °C) by (i) the new and (or) enhanced synthesis of a small number of proteins (the so-called heat-shock proteins; HSPs) having molecular masses of approximately 110 000, 100 000, 90 000, 70 000, 65 000, and 26 000 daltons and (ii) the depressed synthesis of proteins normally made at 37 °C. The HSPs synthesized in culture by human, rabbit, and mouse (peripheral and splenic) lymphocytes are similar in number, molecular mass, and distribution on two-dimensional (isoelectric focusing and sodium dodecyl sulfate – polyacrylamide) electrophoretic gels to those synthesized in vivo by lymphocytes in hyperthermic mice. Since the level of hyperthermia used to induce HSP synthesis in mouse lymphocytes in vitro and in vivo is of a magnitude (41 °C) also used to promote thermotolerance in mice and is similar to temperatures attained during febrile episodes in rabbits and in humans, we suggest that the in vitro and in vivo synthesis of HSPs by mouse lymphocytes, demonstrated in this study, represents a relevant, physiological response which mammalian lymphocytes may normally use to survive periods of thermal stress.


2020 ◽  
Author(s):  
Ilhan Cem Duru ◽  
Anne Ylinen ◽  
Sergei Belanov ◽  
Alan Ávila Pulido ◽  
Lars Paulin ◽  
...  

Abstract Background: Psychrotrophic lactic acid bacteria (LAB) species are the dominant species in microbiota of cold-stored modified-atmosphere-packaged food products and they are the main cause of food spoilage. But still, the cold- and heat-shock response of the spoilage-related psychrotrophic lactic acid bacteria has not been studied. Here, to study cold- and heat-shock response of spoilage lactic acid bacteria, we performed time-series RNA-seq for Le. gelidum, Lc. piscium and P. oligofermentans using temperatures of 0 °C, 4 °C, 14 °C, 25 °C and 28 °C. Results: We showed that the cold-shock protein A (cspA) gene was the main cold-shock protein gene among cold-shock protein genes in all three species. Our results indicated DEAD-box RNA helicase genes (cshA, cshB) play a critical role in cold-shock response in psychrotrophic LAB. In addition, several RNase genes were also involved in cold-shock response in Lc. piscium and P. oligofermentans. Moreover, gene network inference analysis provided candidate genes involved in cold-shock response. Ribosomal proteins, tRNA modification, rRNA modification, and ABC and efflux MFS transporter genes clustered with cold-shock response genes in all three species, which was a strong indication that these genes would be part of cold-shock response machinery. Heat-shock treatment caused upregulation of Clp protease and chaperone genes in all three species and we were able to identify transcription binding site motifs for heat-shock response genes in Le. gelidum and Lc. piscium. Finally, we showed that food spoilage-related genes were upregulated at cold temperatures. Conclusions: The results of this study provide new insights into a better understanding of the cold- and heat-shock response in psychrotrophic LAB. In addition, candidate genes involved in cold- and heat-shock response predicted using gene network inference analysis could be used as a target for future studies.


Genes ◽  
2020 ◽  
Vol 11 (8) ◽  
pp. 867
Author(s):  
Anthony D. Tercero ◽  
Sean P. Place

The suborder Notothenioidae is comprised of Antarctic fishes, several of which have lost their ability to rapidly upregulate heat shock proteins in response to thermal stress, instead adopting a pattern of expression resembling constitutive genes. Given the cold-denaturing effect that sub-zero waters have on proteins, evolution in the Southern Ocean has likely selected for increased expression of molecular chaperones. These selective pressures may have also enabled retention of gene duplicates, bolstering quantitative output of cytosolic heat shock proteins (HSPs). Given that newly duplicated genes are under more relaxed selection, it is plausible that gene duplication enabled altered regulation of such highly conserved genes. To test for evidence of gene duplication, copy number of various isoforms within major heat shock gene families were characterized via qPCR and compared between the Antarctic notothen, Trematomus bernacchii, which lost the inducible heat shock response, and the non-Antarctic notothen, Notothenia angustata, which maintains an inducible heat shock response. The results indicate duplication of isoforms within the hsp70 and hsp40 super families have occurred in the genome of T. bernacchii. The findings suggest gene duplications may have been critical in maintaining protein folding efficiency in the sub-zero waters and provided an evolutionary mechanism of alternative regulation of these conserved gene families.


Sign in / Sign up

Export Citation Format

Share Document