scholarly journals Bubble formation in ϕ6 potential

2007 ◽  
Vol 85 (10) ◽  
pp. 1055-1070 ◽  
Author(s):  
Hatem Widyan

The scalar field theory of the ϕ6 potential is studied at zero temperature and at high temperature. The equations of motion are solved numerically to obtain O(4) spherical symmetric and O(3) cylindrical symmetric bounce solutions. These solutions control the rates for tunneling from the false vacuum to the true vacuum by bubble formation. The range of validity of the thin-wall approximation is investigated. An analytical solution for the bounce is presented, which reproduces the action in the thin-wall as well as the thick-wall limits. PACS Nos.: 11.10.Ef, 05.70.Fh, 11.10.Wx

2010 ◽  
Vol 25 (05) ◽  
pp. 1019-1060 ◽  
Author(s):  
S.-H. HENRY TYE ◽  
DANIEL WOHNS ◽  
YANG ZHANG

We study Coleman–de Luccia tunneling in some detail. We show that, for a single scalar field potential with a true and a false vacuum, there are four types of tunneling, depending on the properties of the potential. A general tunneling process involves a combination of thermal (Gibbons–Hawking temperature) fluctuation part way up the barrier followed by quantum tunneling. The thin-wall approximation is a special limit of the case (of only quantum tunneling) where inside the nucleation bubble is the true vacuum while the outside reaches the false vacuum. Hawking–Moss tunneling is the (only thermal fluctuation) limit of the case where the inside of the bubble does not reach the true vacuum at the moment of its creation, and the outside is cut off by the de Sitter horizon before it reaches the false vacuum. A typical tunneling process is a combination of thermal and quantum tunnelings. We estimate the tunneling rate for this case and find that the corrections to the Hawking–Moss formula can be large. In all cases, we see that the Euclidean action of the bounce decreases rapidly as the vacuum energy density increases, signaling that the tunneling is not exponentially suppressed. This phenomenon may be interpreted as a finite temperature effect due to the Gibbons–Hawking temperature of the de Sitter space. As an application, we discuss the implication of this tunneling property to the cosmic landscape.


2005 ◽  
Vol 19 (14) ◽  
pp. 2311-2319
Author(s):  
DEOG KI HONG ◽  
STEPHEN D. H. HSU

We study an effective field theory describing cold fermionic atoms near a Feshbach resonance. The effective theory gives a precise description of the dynamics in the limit that the energy of the Feshbach resonance is tuned to be twice that of the Fermi surface. We compute the zero temperature superfluid condensate in this limit, and obtain a critical temperature TC≃0.43 TF.


2018 ◽  
Vol 177 ◽  
pp. 09001 ◽  
Author(s):  
Maxim Bezuglov

When the Higgs boson was discovered in 2012 it was realized that electroweak vacuum may suffer a possible metastability on the Planck scale and can eventually decay. To understand this problem it is important to have reliable predictions for the vacuum decay rate within the framework of quantum field theory. For now, it can only be done at one loop level, which is apparently is not enough. The aim of this work is to develop a technique for the calculation of two and higher order radiative corrections to the false vacuum decay rate in the framework of four dimensional scalar quantum field theory and then apply it to the case of the Standard Model. To achieve this goal, we first start from the case of d=1 dimensional QFT i.e. quantum mechanics. We show that for some potentials two and three loop corrections can be very important and must be taken into account. Next, we use quantum mechanical example as a template for the general d=4 dimensional theory. In it we are concentrating on the calculations of bounce solution and corresponding Green function in so called thin wall approximation. The obtained Green function is then used as a main ingredient for the calculation of two loop radiative corrections to the false vacuum decay rate.


2005 ◽  
Vol 14 (06) ◽  
pp. 1063-1073 ◽  
Author(s):  
WONWOO LEE ◽  
CHUL H. LEE

The decay of false vacuum via the true vacuum bubble nucleation has been explored in Einstein theories of gravity with nonminimally-coupled scalar field using Coleman–De Luccia's semiclassical instanton approximation. In this case the false vacuum decay rates and the radius of the bubbles in Coleman's thin-wall approximation have been computed analytically and numerically with several values of nonminimal coupling constant and compared with the standard result obtained by Coleman–De Luccia in the context of scalar field minimally-coupled to Einstein gravity.


1993 ◽  
Vol 07 (01n03) ◽  
pp. 867-870 ◽  
Author(s):  
H. SHIRAISHI ◽  
T. HORI ◽  
Y. YAMAGUCHI ◽  
S. FUNAHASHI ◽  
K. KANEMATSU

The magnetic susceptibility measurements have been made on antiferromagnetic compounds Mn1–xFexSn2 and the magnetic phase diagram was illustrated. The high temperature magnetic phases I and III, major phases, were analyzed on the basis of molecular field theory and explained the change of magnetic structure I⇌III occured at x≈0.8.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
A. D. Gallegos ◽  
U. Gürsoy ◽  
S. Verma ◽  
N. Zinnato

Abstract Non-Riemannian gravitational theories suggest alternative avenues to understand properties of quantum gravity and provide a concrete setting to study condensed matter systems with non-relativistic symmetry. Derivation of an action principle for these theories generally proved challenging for various reasons. In this technical note, we employ the formulation of double field theory to construct actions for a variety of such theories. This formulation helps removing ambiguities in the corresponding equations of motion. In particular, we embed Torsional Newton-Cartan gravity, Carrollian gravity and String Newton-Cartan gravity in double field theory, derive their actions and compare with the previously obtained results in literature.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Yi Liao ◽  
Xiao-Dong Ma

Abstract We investigate systematically dimension-9 operators in the standard model effective field theory which contains only standard model fields and respects its gauge symmetry. With the help of the Hilbert series approach to classifying operators according to their lepton and baryon numbers and their field contents, we construct the basis of operators explicitly. We remove redundant operators by employing various kinematic and algebraic relations including integration by parts, equations of motion, Schouten identities, Dirac matrix and Fierz identities, and Bianchi identities. We confirm counting of independent operators by analyzing their flavor symmetry relations. All operators violate lepton or baryon number or both, and are thus non-Hermitian. Including Hermitian conjugated operators there are $$ {\left.384\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.10\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.4\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.236\right|}_{\Delta B=\pm 1}^{\Delta L=\mp 1} $$ 384 Δ B = 0 Δ L = ± 2 + 10 Δ B = ± 2 Δ L = 0 + 4 Δ B = ± 1 Δ L = ± 3 + 236 Δ B = ± 1 Δ L = ∓ 1 operators without referring to fermion generations, and $$ {\left.44874\right|}_{\Delta B=0}^{\Delta L=\pm 2}+{\left.2862\right|}_{\Delta B=\pm 2}^{\Delta L=0}+{\left.486\right|}_{\Delta B=\pm 1}^{\Delta L=\pm 3}+{\left.42234\right|}_{\Delta B=\mp 1}^{\Delta L=\pm 1} $$ 44874 Δ B = 0 Δ L = ± 2 + 2862 Δ B = ± 2 Δ L = 0 + 486 Δ B = ± 1 Δ L = ± 3 + 42234 Δ B = ∓ 1 Δ L = ± 1 operators when three generations of fermions are referred to, where ∆L, ∆B denote the net lepton and baryon numbers of the operators. Our result provides a starting point for consistent phenomenological studies associated with dimension-9 operators.


2019 ◽  
Vol 27 (01) ◽  
pp. 1950090
Author(s):  
HAIXIA YU ◽  
XIN PAN ◽  
WEIMING YANG ◽  
WENFU ZHANG ◽  
XIAOWEI ZHUANG

Bamboo material is widely used in outdoor applications. However, they are easily degraded when exposed to sunlight, their smooth surface will gradually turn to rough, and small cracks will appear and finally develop to large cracks. The paper presents a first-time investigation on the microstructure changes in the tangential section of Moso bamboo (Phyllostachys pubescens Mazel) radiated by artificial UV light. The results showed that the cracks mainly appeared at intercellular spaces of fibers where lignin content was high, the parenchyma cell walls and neighbor pits where the cell wall was very thin and more vulnerable than the other parts. In addition, the part of raised area and pit cavity tended to absorb more UV light radiation and showed more and larger cracks than the otherwhere. Cracks at the intercellular spaces of fibers were larger and bigger than those on the parenchyma cell walls. The cracks on the pits of the parenchyma cell walls normally appeared at one pit and then extended to the several surrounding pits. Bordered pits cavity showed more and larger cracks than the pits on the thin wall cells. The simple pits on the thick wall cells and the fiber cells were unaffected by UV radiation.


2016 ◽  
Vol 256 ◽  
pp. 334-339 ◽  
Author(s):  
Song Chen ◽  
Fan Zhang ◽  
You Feng He ◽  
Da Quan Li ◽  
Qiang Zhu

Semi-solid slurry has significantly higher viscosity than liquid metal. This character of fluidity makes product design and die design, such as gating system, overflow and venting system, be different between these two die casting processes. In the present paper, taking a clamp product as an example, analyses the product optimization and die design by comparing the experimental and computational numerical simulation results. For the clamp, product structure is designed to be suitable for characters of SSM die casting process. The gating system is designed to be uniform variation of thickness, making the cross-sectional area uniformly reduce from the biscuit to the gate. This design ensures semi-solid metal slurry to fill die cavity from thick wall to thin wall. Gate position is designed at the thickest location, the gate shape of semi-solid die casting is set to be much bigger than traditional liquid casting. A good filling behaviour can be achieved by aforementioned all these design principles and it will be helpful to the intensification of pressure feeding after filling.


2014 ◽  
Vol 29 (24) ◽  
pp. 1430049 ◽  
Author(s):  
Chanyong Park

We review interesting results achieved in recent studies on the holographic Lifshitz field theory. The holographic Lifshitz field theory at finite temperature is described by a Lifshitz black brane geometry. The holographic renormalization together with the regularity of the background metric allows to reproduce thermodynamic quantities of the dual Lifshitz field theory where the Bekenstein–Hawking entropy appears as the renormalized thermal entropy. All results satisfy the desired black brane thermodynamics. In addition, hydrodynamic properties are further reviewed in which the holographic retarded Green functions of the current and momentum operators are studied. In a nonrelativistic Lifshitz field theory, intriguingly, there exists a massive quasinormal mode at finite temperature whose effective mass is linearly proportional to temperature. Even at zero temperature and in the nonzero momentum limit, a quasinormal mode still remains unlike the dual relativistic field theory. Finally, we account for how adding impurity modifies the electric property of the nonrelativistic Lifshitz theory.


Sign in / Sign up

Export Citation Format

Share Document