VIBRATIONAL RELAXATION IN DISSOCIATING DIATOMIC GASES

1963 ◽  
Vol 41 (5) ◽  
pp. 717-723 ◽  
Author(s):  
M. McChesney

This article questions the available theoretical analyses relating to the vibrational excitation of a dissociating gas which assume that the gas dissociates from vibrational level populations given by the Maxwell–Boltzmann distribution law. The two theories of thermal dissociation are briefly outlined and it is shown that either theory gives non-equilibrium-level populations. Furthermore, the use of a simple relaxation equation to describe the vibrational excitation of anharmonic oscillators in high vibrational levels is questioned.


1984 ◽  
Vol 62 (8) ◽  
pp. 780-788 ◽  
Author(s):  
I. C. McDade ◽  
E. J. Llewellyn ◽  
R. G. H. Greer ◽  
G. Witt

A simple vibrational relaxation model that reproduces the observed vibrational distribution of the [Formula: see text] Herzberg II bands in the terrestrial nightglow is used to derive the altitude profiles of the fractional populations in the individual vibrational levels. Through consideration of these profiles it is shown that if [Formula: see text] is the Barth precursor of O(1S) in the nightglow then, at least in the terrestrial atmosphere, the higher vibrational levels appear to be more effective in the Barth transfer step than the lower vibrational levels.



2018 ◽  
Vol 36 (1) ◽  
pp. 13-24 ◽  
Author(s):  
Konstantinos S. Kalogerakis ◽  
Daniel Matsiev ◽  
Philip C. Cosby ◽  
James A. Dodd ◽  
Stefano Falcinelli ◽  
...  

Abstract. The question of whether mesospheric OH(v) rotational population distributions are in equilibrium with the local kinetic temperature has been debated over several decades. Despite several indications for the existence of non-equilibrium effects, the general consensus has been that emissions originating from low rotational levels are thermalized. Sky spectra simultaneously observing several vibrational levels demonstrated reproducible trends in the extracted OH(v) rotational temperatures as a function of vibrational excitation. Laboratory experiments provided information on rotational energy transfer and direct evidence for fast multi-quantum OH(high-v) vibrational relaxation by O atoms. We examine the relationship of the new relaxation pathways with the behavior exhibited by OH(v) rotational population distributions. Rapid OH(high-v) + O multi-quantum vibrational relaxation connects high and low vibrational levels and enhances the hot tail of the OH(low-v) rotational distributions. The effective rotational temperatures of mesospheric OH(v) are found to deviate from local thermodynamic equilibrium for all observed vibrational levels. Dedicated to Tom G. Slanger in celebration of his 5 decades of research in aeronomy.



In order to clarify the effects of vibrational excitation on shock-wave transitions of weak, spherical N-waves, which were generated by using sparks and exploding wires as sources, the compressible Navier-Stokes equations were solved numerically, with a vibrational-relaxation equation for oxygen. An explosion from a small pressurized sphere filled with air was used to simulate the N-waves generated from the actual sources. By employing the random-choice method (r. c. m.) with an operator-splitting technique, the effects of artificial viscosity appearing in finite-difference schemes were eliminated and accurate profiles of the shock transitions were obtained. However, a slight randomness in the variation of the shock thickness remains. It is shown that a computer simulation is possible by using a proper choice of initial parameters to obtain the variations of N-wave overpressure and half-duration with distance from the source. The calculated rise times are also shown to simulate both spark and exploding-wire data. It was found that, in addition to the vibrational-relaxation time of oxygen, both the duration (N-wave effect) and the attenuation rate (non-stationary effect) of a spherical N-wave are important factors controlling its rise time. These effects are discussed in more detail in relation to Lighthill’s analytical solutions and the r. c. m. solutions for non-stationary plane waves and spherical N-waves. It is also shown that the duration and the attenuation rate of a spherical N-wave are affected by viscosity, and vibrational non-equilibrium, so that they can deviate from the results of classical, linear acoustic theory for very weak spherical waves.





Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 864 ◽  
Author(s):  
Weidong Pan ◽  
Shaopeng Zhang ◽  
Yi Liu

Mining at the fully mechanized working face below the goaf of the short-distance coal seam is influenced by the upper goaf. To address this problem, methods such as theoretical analyses, numerical simulation, and on-site measurement are used to study the strata behavior characteristics of the Ningxia Lingxin Coal Mine 051508 working face in this study. The roof weighting intervals of the working faces below the goaf and the non-goaf are obtained via theoretical calculations. The stoping processes of the working faces below the goaf and the non-goaf are simulated with FLAC3D to obtain the distribution law of the bearing pressure and plastic zones before the working face. Based on the statistical analysis of the measured working resistance of the supports and its distribution, the roof weighting interval of the working face mining below the goaf is obtained. The results show that the roof weighting interval and the advanced abutment pressure during mining at the working face below the goaf are smaller than those below the non-goaf, providing a reasonable theoretical basis for mining below the goaf, and having important significance for safe and efficient mining.



1971 ◽  
Vol 26 (10) ◽  
pp. 1617-1625 ◽  
Author(s):  
F. Linder ◽  
H. Schmidt

Abstract Elastic scattering, vibrational excitation to v=1, 2, 3, 4 of the electronic ground state, and electronic excitation to the states a1Δ g and b1Σg+ of O2 have been measured in a crossed beam apparatus for collision energies from nearly 0 eV to 4 eV. Differential and integral cross sections have been determined and calibrated on an absolute scale. From 15 vibrational levels of O2-, which could be observed as resonances in the cross sections, the spectroscopic constants for the vibrational structure of O2- have been derived: ωe = 135 meV and ωeχe = 1 meV. The cross sections for vibrational excitation have the order of 10-18 cm2. eV for the larger resonance peaks. Detailed cross sections have been listed in Table 1. The half width of the resonance can be estimated to Γ ≈ 0.5 meV, which corresponds to a lifetime tof 10-12 sec for the O2- states. The angular dependence of pure resonance scattering is rather flat and not in accordance with the simplest theoretical model. An analysis of the angular dependence and of the rotational structure of the resonance in a somewhat extended model have been performed. - No electronically excited O2-states could be detected in the energy range up to 3 eV.



1961 ◽  
Vol 10 (1) ◽  
pp. 33-47 ◽  
Author(s):  
P. A. Blythe

The validity of various solutions for the vibrational relaxation region in shock-waves, and of the assumptions on which they are based, has been assesed by comparison with an exact solution obtained by numerical integration of the relaxation equation, and also by use of the Rayleigh-line equations. Estimates of errors in the values of the relaxation frequency, determined by means of these solutions, are given.



1970 ◽  
Vol 53 (10) ◽  
pp. 4107-4108 ◽  
Author(s):  
C. T. Hsu ◽  
L. D. McMillen


1971 ◽  
Vol 4 (3) ◽  
pp. 200-202 ◽  
Author(s):  
N. A. Generalov ◽  
B. V. Kuksenko ◽  
S. A. Losev ◽  
A. I. Osipov


Sign in / Sign up

Export Citation Format

Share Document