Inelastic cross sections of nucleons and π mesons in carbon and lead near 100 GeV

1968 ◽  
Vol 46 (10) ◽  
pp. S694-S696 ◽  
Author(s):  
A. V. Alakoz ◽  
V. N. Bolotov ◽  
M. I. Devishev ◽  
L. F. Klimanova ◽  
A. P. Shmeleva

An experiment to measure the cross section for high-energy cosmic-ray neutrons and charged nuclear-active particle interactions with Pb and C nuclei has been carried out at an altitude of 2 000 m. Large spark chambers were used in a detector which selected neutrons and charged nuclear-active particles in the region of 100 GeV. The results are σπ(nPb) = (1.65 ± 0.17) barn, σπ(nC) = (0.204 ± 0.02) barn, σπ(πPb) = (1.53 ± 0.17) barn, σπ(πC) = (0.168 ± 0.017) barn.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Roman N. Lee ◽  
Alexey A. Lyubyakin ◽  
Vyacheslav A. Stotsky

Abstract Using modern multiloop calculation methods, we derive the analytical expressions for the total cross sections of the processes e−γ →$$ {e}^{-}X\overline{X} $$ e − X X ¯ with X = μ, γ or e at arbitrary energies. For the first two processes our results are expressed via classical polylogarithms. The cross section of e−γ → e−e−e+ is represented as a one-fold integral of complete elliptic integral K and logarithms. Using our results, we calculate the threshold and high-energy asymptotics and compare them with available results.


Symmetry ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 708 ◽  
Author(s):  
Vitaly Beylin ◽  
Maxim Bezuglov ◽  
Vladimir Kuksa ◽  
Egor Tretiakov

The interaction of high-energy leptons with components of Dark Matter in a hypercolor model is considered. The possibility of detection, using IceCube secondary neutrinos produced by quasielastic scattering of cosmic ray electrons off hidden mass particles, is investigated. The dominant contribution to the cross section results from diagrams with scalar exchanges. A strong dependence of the total cross section on the Dark Matter components mass is also found.


Author(s):  
Le Nhu Thuc ◽  
Dao Thi Le Thuy

Scalar unparticle production in the process is studied from unparticle physics perspective. We have calculated and evaluated the cross sections for muon and Z boson exchange when the  beams are initially polarized. Numerical calculations show that the cross section of collisions depends strongly on the polarized condition of the initial beams and the collision energy . The results are plotted in the energy reach available at the present accelerators and the future high energy frontier muon colliders as shown in the scheme by Muon Accelerator Program (MAP) and other different colliders.


1998 ◽  
Vol 13 (33) ◽  
pp. 2665-2678 ◽  
Author(s):  
DEBASIS BHOWMICK ◽  
ALOK CHAKRABARTI ◽  
D. N. BASU ◽  
PREMOMOY GHOSH ◽  
RANJANA GOSWAMI

The projectile fragment separator type radioactive ion beam (RIB) facilities, being developed in different laboratories, provide the scope for producing many new exotic nuclei through fragmentation of high energy radioactive ion (RI) beams. A new empirical parametrization for the estimation of cross-sections of projectile fragments has been prescribed for studying the advantages and limitations of high energy RI beams for the production of new exotic nuclei. The parametrization reproduces the experimental data for the production of fragments from neutron-rich projectiles accurately in contrast to the existing parametrization which tends to overestimate the cross-section of neutron-rich fragments in most cases. The modified formalism has been used to compute the cross-sections of neutron-rich species produced by fragmentation of radioactive projectiles (RIBs). It has been found that, given any limit of production cross-section, the exoticity of the fragment increases rather slowly and shows a saturation tendency as the projectile is made more and more exotic. This essentially limits, to an extent, the utility of very neutron-rich radioactive beams vis-a-vis production of new neutron-rich exotic species.


2019 ◽  
Vol 204 ◽  
pp. 10011
Author(s):  
Igor Sitnik

Deuteron breakup cross sections on the C and CH2 targets have been measured up to the proton internal momenta of 0.3 GeV/c. The cross-sections 12C(d, p)X and 1H(d, p)X reactions have been obtained with high precision. The obtained data are compared with previous measurements. The behavior features in the vicinity of the cross section maximum were studied in dependence on the transversal momentum in the region of 0.01 < pt < 0.16 GeV/c. The measurements have been performed at the Veksler Baldin Laboratory of High Energy Physics of the Joint Institute for Nuclear Research.


An expression for the cross-section describing electron capture by protons in atomic hydrogen is derived from an expansion based on atomic wave functions. Full account is taken of momentum transfer and of the non-orthogonality of the wave functions of the initial and final states by the method due to Bates. The cross-sections have been computed for proton energies from 100 to 1 MeV. In the low energy limit, the results agree with the p.s.s. calculations of Dalgarno & Yadav and in the high energy limit with the calculations of Brinkm an & Kramers.


2019 ◽  
Vol 208 ◽  
pp. 08016
Author(s):  
Zbigniew Plebaniak ◽  
Tadeusz Wibig

Determination of the primary particle mass using air fluorescence or a Cherenkov detector array is one of the most difficult task of experimental cosmic ray studies. The information about the primary particle mass is a compound of the produced particle multiplicity, inelasticity, interaction cross-section and many other parameters, thus it is necessary to compare registered showers with sophisticated Monte-Carlo simulation results. In this work we present results of the studies of at least three possible ways of extrapolating proton- Nucleus and Nucleus-Nucleus cross sections to cosmic ray energies based on the Glauber theory. They are compared with experimental accelerator and cosmic ray data for the proton-air cross section. We also present results of the EAS development with the most popular high-energy interaction models adopted in the CORSIKA program with our cross section extrapolations. The average position of the shower maximum and the width of its distribution are compared with experimental data and some discussion is given.


2020 ◽  
Vol 227 ◽  
pp. 01007 ◽  
Author(s):  
M. Gai ◽  
E.E. Kading ◽  
M. Hass ◽  
K.M. Nollett ◽  
S.R. Stern ◽  
...  

We report the first measurement of alpha-particles from the interaction of neutrons with 7Be at “temperatures” of Big Bang Nucleosynthesis (BBN). We measured the Maxwellian averaged cross sections (MACS), with neutron beams produced by the LiLiT at the SARAF in Israel (with kT = 49.5 keV hence 0.57 GK). In addition, we measured the cross section of the 7Be(n,p) reaction, which is in excellent agreement with the recent measurement of the n_TOF collaboration, further substantiating our method as a demonstration of “proof of principle”. The cross section for the 7Be(n,ga) and the 7Be(n,a) reaction measured in the “BBN window” is considerably smaller than compiled by Wagoner in 1969 and used today in Big Bang Nucleosynthesis (BBN). We also rule out a hitherto unknown resonance in 8Be at the BBN window, that was conjectured as a possible standard nuclear physics solution to the “Primordial 7Li Problem”. Together with previous results, we deduce a new Wagoner-like Rate for the destruction of 7Be by neutrons which is based on all current measured data. We conclude the lack of a standard nuclear solution to the “Primordial 7Li Problem”. Our upper limit on the cross sections for the high energy alpha-particles is in agreement with recent measurement of the n_TOF collaboration, but it is considerably smaller than the p-wave extrapolation of the Kyoto collaboration. We measured the alpha-particles from the 7Be(n,gi)8Be*(3.03 MeV) reaction, which is considerably larger than a previous s-wave estimate. Hence, in contrast, we conclude s-wave dominance at BBN energies, as would be expected due to the broad (122 keV) low lying 2” state at En = 10 keV.


1968 ◽  
Vol 46 (10) ◽  
pp. S557-S560 ◽  
Author(s):  
F. Yiou ◽  
J. Dufaure de Citres ◽  
F. Frehel ◽  
E. Gradsztajn ◽  
R. Bernas

The determination of Li, Be, and B cross sections formed by spallation reactions induced by high-energy protons in C, N, and O targets is of interest for cosmic-ray physics and astrophysics. A mass-spectrometric method has been devised to measure the stable and long-lived isotopes 6Li, 7Li, 9Be, 10Be (τ = 2.5 × 106 yr), 7Be (τ = 54 d), 10B, 11B, formed in oxygen for proton energies of 0.15, 0.60, and 19 GeV. These results have been included in a program of calculations allowing us to determine the quantity of matter traversed by galactic cosmic rays of energy > 1.5 GeV/nucleon; the observed relative abundances are best fitted, in the slab approximation, by passage through 5.4 ± 1 g/cm2 of hydrogen.


Sign in / Sign up

Export Citation Format

Share Document