Conduction Electron Contributions to the Crystalline Electric Fields in Transition Metals

1974 ◽  
Vol 52 (11) ◽  
pp. 985-988 ◽  
Author(s):  
A. Ludwig ◽  
R. A. B. Devine

We discuss the origin of the crystalline electric fields for rare earth ions in transition and noble metal hosts, in terms of the band character of the host material and of localization and delocalization of 5d electrons on the rare earth ions. A tentative explanation is given for the almost pure negative point charge character found in Pd and Pt.

Nanoscale ◽  
2018 ◽  
Vol 10 (23) ◽  
pp. 11186-11195 ◽  
Author(s):  
C. H. Wong ◽  
E. A. Buntov ◽  
A. F. Zatsepin ◽  
J. Lyu ◽  
R. Lortz ◽  
...  

The study of magnetism without the involvement of transition metals or rare earth ions is considered the key to the fabrication of next-generation spintronic devices.


1988 ◽  
Vol 02 (06) ◽  
pp. 1395-1398
Author(s):  
J. R. HWANG ◽  
M. F. TAI ◽  
H. C. KU ◽  
W. N. WANG ◽  
K. H. LII

Electrical and magnetic measurements have been carried out for the rare earth disordered superconducting copper oxide systems ( Y 1−x Yb x) Ba 2 Cu 3 O 7 (substitution with large rare earth mass difference) and ( Sm 1−x Yb x) Ba 2 Cu 3 O 7 (substitution with large rare earth ionic size difference). Effect of compositional variation upon room temperature electrical resistivity shows no disorder scattering contribution from the randomly distributed rare earth ions located on the (1/2, 1/2, 1/2) site of the space group Pmmm. This result indicates very low conduction electron density of states surrounding rare earth ions. On the contrary, negative deviation of electrical resistivity from the linear Vegard law was observed. This reduced conduction electron scattering was discussed through the variation of packing density, grain size and/or twin structure.


2016 ◽  
Vol 18 (23) ◽  
pp. 16039-16045 ◽  
Author(s):  
Alok Rout ◽  
Koen Binnemans

Efficient separation of transition metal ions from their mixture with rare-earth ions was achieved by extraction with a phosphonium thiocyanate ionic liquid.


2000 ◽  
Vol 647 ◽  
Author(s):  
Ch. Buchal ◽  
S. Coffa ◽  
S. Wang ◽  
R. Carius

AbstractEfficient infra-red and visible electroluminescence(EL) has been obtained from implanted rare earth ions in the SiO2 of a silicon-metal-oxide-semiconductor (MOS) diode structure at room temperature. The rare earth ions are excited by the direct impact of hot electrons tunneling through the oxide at electric fields larger than 6 MV/cm. The internal quantum efficiencies of Er and Tb implanted MOS diodes are estimated to be 10 % and 3 %, respectively. The hgh quantum efficiency is due to the high impact excitation cross-section of more than 10− 15cm2. These observations on MOS structures are an experimental proof for efficient light generation by hot electron impact.


Sign in / Sign up

Export Citation Format

Share Document