Phonon dispersion in Co0.92Fe0.08

1979 ◽  
Vol 57 (2) ◽  
pp. 253-262 ◽  
Author(s):  
E. C. Svensson ◽  
B. M. Powell ◽  
A. D. B. Woods ◽  
W. -D. Teuchert

The dispersion relation for phonons propagating along the [00ζ], [ζζ0], and [ζζζ] directions in face-centred-cubic Co0.92Fe0.08 at T = 296 K has been determined by means of neutron inelastic scattering. The results have been analysed to obtain atomic force constants, the frequency distribution function, and the temperature dependence of the Debye characteristic temperature and the mean square displacement of the atoms. On average, the frequencies for Co0.92Fe0.08 scale approximately as expected with those for Ni and Cu but there are definite wave-vector-dependent variations in the scaling which presumably reflect the different electronic structures of the three materials.

2008 ◽  
Vol 140 ◽  
pp. 141-146
Author(s):  
P. Raczynski ◽  
A. Dawid ◽  
Z. Gburski

Molecular dynamics (MD) simulations have been made for a cluster of cholesterols localized near the transmembrane protein at the physiological temperature of 310 K. It was observed that the cholesterol molecules form a lodgment on the surface of protein. Additional studies were made of the influence of graphene sheet on several physical observables of cholesterol molecules including: the radial distribution function, the mean square displacement, diffusion coefficient and the linear and angular velocity autocorrelation functions.


2012 ◽  
Vol 340 ◽  
pp. 012093 ◽  
Author(s):  
A Benedetto ◽  
S Magazù ◽  
F Migliardo ◽  
C Mondelli ◽  
M A Gonzalez

Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 111
Author(s):  
Leonid M. Ivanov ◽  
Collins A. Collins ◽  
Tetyana Margolina

Using discrete wavelets, a novel technique is developed to estimate turbulent diffusion coefficients and power exponents from single Lagrangian particle trajectories. The technique differs from the classical approach (Davis (1991)’s technique) because averaging over a statistical ensemble of the mean square displacement (<X2>) is replaced by averaging along a single Lagrangian trajectory X(t) = {X(t), Y(t)}. Metzler et al. (2014) have demonstrated that for an ergodic (for example, normal diffusion) flow, the mean square displacement is <X2> = limT→∞τX2(T,s), where τX2 (T, s) = 1/(T − s) ∫0T−s(X(t+Δt) − X(t))2 dt, T and s are observational and lag times but for weak non-ergodic (such as super-diffusion and sub-diffusion) flows <X2> = limT→∞≪τX2(T,s)≫, where ≪…≫ is some additional averaging. Numerical calculations for surface drifters in the Black Sea and isobaric RAFOS floats deployed at mid depths in the California Current system demonstrated that the reconstructed diffusion coefficients were smaller than those calculated by Davis (1991)’s technique. This difference is caused by the choice of the Lagrangian mean. The technique proposed here is applied to the analysis of Lagrangian motions in the Black Sea (horizontal diffusion coefficients varied from 105 to 106 cm2/s) and for the sub-diffusion of two RAFOS floats in the California Current system where power exponents varied from 0.65 to 0.72. RAFOS float motions were found to be strongly non-ergodic and non-Gaussian.


1991 ◽  
Vol 46 (7) ◽  
pp. 616-620 ◽  
Author(s):  
Junko Habasaki

MD simulation has been performed to learn the microscopic mechanism of diffusion of ions in the Li2SiO3 system. The motion of lithium ions can be explained by the trapping model, where lithium is trapped in the polyhedron and moves with fluctuation of the coordination number. The mean square displacement of lithium was found to correlate well with the net changes in coordination number.


1994 ◽  
Vol 08 (24) ◽  
pp. 3411-3422 ◽  
Author(s):  
W. SCHOMMERS

The effect of premelting is of particular interest in connection with the theory of melting. In this paper, we discuss the structural and dynamical properties of the surfaces of semi-infinite crystals as well as of nano-clusters, which show the effect of premelting. The investigations are based on molecular-dynamics calculations: different models are used for the systematic study of the effect of premelting. In particular, the behaviour of the following functions have been studied: pair correlation function, generalized phonon density of states, and the mean-square displacement as a function of time. The calculations have been done for krypton since for this substance a reliable interaction potential is available.


2018 ◽  
Vol 32 (19) ◽  
pp. 1850210
Author(s):  
Chun-Yang Wang ◽  
Zhao-Peng Sun ◽  
Ming Qin ◽  
Yu-Qing Xu ◽  
Shu-Qin Lv ◽  
...  

We report, in this paper, a recent study on the dynamical mechanism of Brownian particles diffusing in the fractional damping environment, where several important quantities such as the mean square displacement (MSD) and mean square velocity are calculated for dynamical analysis. A particular type of backward motion is found in the diffusion process. The reason of it is analyzed intrinsically by comparing with the diffusion in various dissipative environments. Results show that the diffusion in the fractional damping environment obeys the Langevin dynamics which is quite different form what is expected.


1963 ◽  
Vol 41 (12) ◽  
pp. 1960-1966 ◽  
Author(s):  
Ta-You Wu ◽  
M. K. Sundaresan

The linearized Vlasov equation is solved as an initial value problem by expanding (the Fourier components of) the distribution function in a series of Hermite polynomials in the momentum, with coefficients which are functions of time. The spectrum of frequencies is given by the eigenvalues of an infinite matrix. All the frequencies ω are real, extending from small values of order ω2 = k2(u22), where (u22) is the mean square velocity of the positive ions (of mass M), to [Formula: see text], where ω1, (u12) are the plasma frequency and mean square velocity of the electrons (of mass m). The classic work of Landau solves the Vlasov equation for (the Fourier transform of) the potential for which he obtains the "damping", whereas Van Kampen and the present writers solve the equation for (the Fourier transform of) the distribution function itself. While the present work gives results equivalent to those of Van Kampen, the method is simpler and in fact elementary.


1977 ◽  
Vol 44 (3) ◽  
pp. 487-491 ◽  
Author(s):  
S. F. Masri ◽  
F. Udwadia

The transient mean-square displacement, slope, and relative motion of a viscously damped shear beam subjected to correlated random boundary excitation is presented. The effects of various system parameters including the spectral characteristics of the excitation, the delay time between the beam support motion, and the beam damping have been investigated. Marked amplifications in the mean-square response are shown to occur for certain dimensionless time delays.


Sign in / Sign up

Export Citation Format

Share Document