The effect of a general oblique magnetic field on Rayleigh–Taylor instability

1979 ◽  
Vol 57 (8) ◽  
pp. 1094-1102 ◽  
Author(s):  
P. D. Ariel ◽  
B. D. Aggarwala

The effect of a general oblique magnetic field on the development of Rayleigh–Taylor instability has been investigated. It has been demonstrated that n2 is purely real, where n is the growth rate of disturbance. Also in this case, the solution is characterized by a variational principle. The exact solution for the case of two superposed fluids has been derived when the oblique magnetic field is constant. It is shown that when the lighter fluid is topped by the heavier fluid a mode of maximum instability exists if the ratio of horizontal to vertical magnetic field is sufficiently large. No normal mode solution is possible if the lighter fluid lies atop the heavier fluid. Use has been made of variational principle to obtain the approximate solution of a fluid having exponentially varying density. It is found that for some disturbances, the oblique magnetic field has a greater stabilizing influence compared to a horizontal or vertical magnetic field of the same strength.

2010 ◽  
Vol 14 (1) ◽  
pp. 11-29 ◽  
Author(s):  
Praveen Sharma ◽  
Ram Prajapati ◽  
Rajendra Chhajlani

The linear Rayleigh-Taylor instability of two superposed incompressible magnetized fluids is investigated incorporating the effects of suspended dust particles and viscosity. The basic magnetohydrodynamic set of equations have been constructed and linearized. The dispersion relation for 2-D and 3-D perturbations is obtained by applying the appropriate boundary conditions. The condition of Rayleigh-Taylor instability is investigated for potentially stable and unstable modes, which depends upon magnetic field, viscosity and suspended dust particles. The stability of the system is discussed by applying the Routh-Hurwitz criterion. It is found that the Alfven mode comes into the dispersion relation for perturbations in x, y-directions and in only x-direction, while it does not come into y-directional perturbation. The stable configuration is found to remain stable even in the presence of suspended dust particles. Numerical calculations have been performed to see the effects of various parameters on the growth rate of Rayleigh-Taylor instability. It is found that magnetic field and relaxation frequency of suspended dust particles both have destabilizing influence on the growth rate of Rayleigh-Taylor instability. The effects of kinematic viscosity and mass concentration of dust particles are found to have stabilized the growth rate of linear Rayleigh-Taylor instability.


1976 ◽  
Vol 15 (2) ◽  
pp. 239-244 ◽  
Author(s):  
G. L. Kalra ◽  
S. N. Kathuria

Nonlinear theory of Rayleigh—Taylor instability in plasma supported by a vacuum magnetic field shows that the growth rate of the mode, unstable in the linear theory, increases if the wavelength of perturbation π lies betweenand 2πcrit. This might have an important bearing on the proposed thermonuclear MHD power generation experiments.


2004 ◽  
Vol 22 (1) ◽  
pp. 29-33 ◽  
Author(s):  
N. RUDRAIAH ◽  
B.S. KRISHNAMURTHY ◽  
A.S. JALAJA ◽  
TARA DESAI

The Rayleigh–Taylor instability (RTI) of a laser-accelerated ablative surface of a thin plasma layer in an inertial fusion energy (IFE) target with incompressible electrically conducting plasma in the presence of a transverse magnetic field is investigated using linear stability analysis. A simple theory based on Stokes-lubrication approximation is proposed. It is shown that the effect of a transverse magnetic field is to reduce the growth rate of RTI considerably over the value it would have in the absence of a magnetic field. This is useful in the extraction of IFE efficiently.


2020 ◽  
Vol 634 ◽  
pp. A96
Author(s):  
E. Vickers ◽  
I. Ballai ◽  
R. Erdélyi

Aims. We investigate the nature of the magnetic Rayleigh–Taylor instability at a density interface that is permeated by an oblique homogeneous magnetic field in an incompressible limit. Methods. Using the system of linearised ideal incompressible magnetohydrodynamics equations, we derive the dispersion relation for perturbations of the contact discontinuity by imposing the necessary continuity conditions at the interface. The imaginary part of the frequency describes the growth rate of waves due to instability. The growth rate of waves is studied by numerically solving the dispersion relation. Results. The critical wavenumber at which waves become unstable, which is present for a parallel magnetic field, disappears because the magnetic field is inclined. Instead, waves are shown to be unstable for all wavenumbers. Theoretical results are applied to diagnose the structure of the magnetic field in prominence threads. When we apply our theoretical results to observed waves in prominence plumes, we obtain a wide range of field inclination angles, from 0.5° up to 30°. These results highlight the diagnostic possibilities that our study offers.


1998 ◽  
Vol 53 (12) ◽  
pp. 937-944 ◽  
Author(s):  
P. K. Sharma ◽  
R. K. Chhajlani

Abstract The Rayleigh-Taylor (R-T) instability of two superposed plasmas, consisting of interacting ions and neutrals, in a horizontal magnetic field is investigated. The usual magnetohydrodynamic equations, including the permeability of the medium, are modified for finite Larmor radius (FLR) corrections. From the relevant linearized perturbation equations, using normal mode analysis, the dispersion relation for the two superposed fluids of different densities is derived. This relation shows that the growth rate unstability is reduced due to FLR corrections, rotation and the presence of neutrals. The horizontal magnetic field plays no role in the R-T instability. The R-T instability is discussed for various simplified configurations. It remains unaffected by the permeability of the porous medium, presence of neutral particles and rotation. The effect of different factors on the growth rate of R-T instability is investigated using numerical analysis. Corresponding graphs are plotted for showing the effect of these factors on the growth of the R-T instability.


1984 ◽  
Vol 39 (10) ◽  
pp. 939-944 ◽  
Author(s):  
R. K. Chhajlani ◽  
R. K. Sanghvi ◽  
P. Purohit

Abstract The hydromagnetric Rayleigh-Taylor instability of a composite medium has been studied in the presence of suspended particles for an exponentially varying density distribution. The prevalent horizontal magnetic field and viscosity of the medium are assumed to be variable. The dispersion relation is derived for such a medium. It is found that the stability criterion is independent of both viscosity and suspended particles. The system can be stabilized for an appropriate value of the magnetic field. It is found that the suspended particles can suppress as well as enhance the growth rate of the instability in certain regions. The growth rates are obtained for a viscid medium with the inclusion of suspended particles and without it. It has been shown analytically that the growth rate is modified by the inclusion of the relaxation frequency parameter of the suspended particles.


Sign in / Sign up

Export Citation Format

Share Document