Positronium–atom scattering

1996 ◽  
Vol 74 (7-8) ◽  
pp. 434-444 ◽  
Author(s):  
Mary T. McAlinden ◽  
F. G. R. S. MacDonald ◽  
H. R. J. Walters

Calculations of total cross sections for Ps(1 s) scattering by atomic hydrogen, helium, and argon are reported for the energy range 0–150 eV. The results for atomic hydrogen have been evaluated exactly within the first Born approximation. For collisions with helium and argon in which the target remains in its initial state (so called target elastic collisions) it is assumed that the positronium scatters off a frozen target atom and a coupled positronium pseudostate approximation is then used to calculate the cross sections. For collisions in which the target atom is excited or ionized (target inelastic collisions) the first Born approximation is adopted. Here there is a significant problem in summing over all final states of the target and for this a scheme due to Hartley and Walters has been employed. It is found that for the light targets, hydrogen and helium, target inelastic collisions become dominant above 45 and 105 eV, respectively, while for the heavier argon atom, target elastic scattering is always more important. Except at the lowest energies, and for both target elastic and target inelastic collisions, positronium ionization is the main outcome of the collision for all three atoms. There is an encouraging degree of agreement at the higher energies with the total cross-section measurements of Zafar et al. and Laricchia et al. for helium and argon. The present approximations do not include electron exchange between the positronium and the atom which may be the main source of disagreement between theory and experiment elsewhere.

1960 ◽  
Vol 38 (12) ◽  
pp. 1654-1660 ◽  
Author(s):  
Ta-You Wu

The elastic (1s–1s) and the inelastic (1s–2s, 1s–2p) scattering cross sections in the Born approximation at energies of 1, 4, 9, 16 rydbergs have been calculated exactly from the closed formulas of the matrix elements for these transitions. Both the differential and the total cross sections are given here.


1982 ◽  
Vol 60 (4) ◽  
pp. 558-564 ◽  
Author(s):  
F. W. Byron Jr.

A brief survey of available theoretical techniques is given for positron–atom scattering. The distinction between methods involving a finite number of target states and those with an infinite number of target states is emphasized. The situation regarding total cross sections is summarized, and a new, non-perturbative, eikonal-type approximation, based on the work of Wallace, is introduced.


1969 ◽  
Vol 24 (8) ◽  
pp. 1188-1195
Author(s):  
Terje Aurdal

Abstract Photodisintegration cross sections for the reaction 9Be(γ,n) 8Be with photonenergies varied from threshold to about 17 MeV are calculated. As nuclear model is assumed a single particle shell model where the valence neutron outside the 8Be core is feeling a spherical field. The core state is assumed to be a mixture of the ground (0+) and the first excited (2+) state of the 8Be nucleus. The total cross sections are splitted up according to the different contributing reaction channels. The radial wave functions in initial as well as final states are of the Saxon-Woods type.


2009 ◽  
Vol 79 (4) ◽  
Author(s):  
M. McGovern ◽  
D. Assafrão ◽  
J. R. Mohallem ◽  
Colm T. Whelan ◽  
H. R. J. Walters

1994 ◽  
Vol 47 (6) ◽  
pp. 721 ◽  
Author(s):  
Jim Mitroy ◽  
Kurunathan Ratnavelu

The close coupling equatious for positron-alkali atom scattering are written as a set of coupled momentum-space Lippmann-Schwinger equations. The alkali atom is represented by a frozen-core model based upon the Hartree-Fock approximation. The interaction between the positronium and the residual ion is modified by the inclusion of a core potential. Similarly, a core term is present in the interaction describing the rearrangement process. Close coupling calculations of positron scattering from sodium are performed in a model containing multiple sodium (3s, 3p, 4s, 3d, 4p) and positronium (Is, 2s, 2p) states. Cross sections are reported for an energy range from threshold to 50�eV; the total cross sections are in agreement with experimental data.


1975 ◽  
Vol 53 (10) ◽  
pp. 962-967 ◽  
Author(s):  
B. Jaduszliwer ◽  
A. Nakashima ◽  
D. A. L. Paul

The total cross sections for the scattering of positrons by helium have been measured by the method of transmission in the 16 to 270 eV energy range. The experimental results are higher than those of Canter et al. but are in reasonable agreement with recent results of Griffith et al., and at high energies tend towards Born approximation calculations. The integral of the cross section over positron momentum is smaller than the sum rule estimate made by Bransden et al. A tentative value of (0.034 ± 0.017)πa02 is assigned to the positronium formation cross section at threshold.


1998 ◽  
Vol 290 (1-3) ◽  
pp. 17-23 ◽  
Author(s):  
Brunetto G. Brunetti ◽  
Pietro Candori ◽  
Jaime De Andres ◽  
Stefano Falcinelli ◽  
Marta Stramaccia ◽  
...  

The absolute electron yield ( γ M ) for He (2 3 S ) metastable atoms incident on a gold surface has been measured. The method requires passage of a metastable atom flux through a collision chamber containing argon and thence to the gold surface. From observations on the current of argon ions arising from collisions of the type He (2 3 S ) + A → He + A + + e , together with measurements of the electron emission from the gold surface, γ M may be determined. The total cross-sections for collisions between metastable helium atoms and He, Ne, A and K have been measured and in the asymmetrical cases are observed to rise linearly with increasing atomic number of the target atom. Some collisions involving helium resonance radiation have also been studied. In particular, the photo-electric yield from the gold surface has been determined together with the attenuation of the photon flux in passage through certain noble gases.


1998 ◽  
Vol 76 (3) ◽  
pp. 245-250 ◽  
Author(s):  
S -M Li ◽  
J -G Khou ◽  
Z -F Zhou ◽  
J Chen ◽  
Y -Y Liu

In the first Born approximation, the dressing modification in laser-assisted charge exchange collision is investigated. The crosssections for electron capture by a proton from dressed atomic hydrogen and dressed helium targets are calculated within awide energy range. Theoretical results show that with impact energy increasing, the dressing effect leads to increasingly significant cross-section modifications. The modified capture cross sections are increasing functions of the ratio of laser strength to frequency. PACS Nos.: 34.50.Rk; 34.70.+e; 32.80.Wr; and 34.90.+q


Sign in / Sign up

Export Citation Format

Share Document