Pore-water pressure and water volume change of an unsaturated soil under infiltration conditions

2005 ◽  
Vol 42 (6) ◽  
pp. 1509-1531 ◽  
Author(s):  
Inge Meilani ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

Triaxial shearing–infiltration tests were conducted to study the pore-water pressure and volume change of unsaturated soils subjected to infiltration conditions. A modified triaxial apparatus with three Nanyang Technological University (NTU) mini suction probes along the specimen height was used for the experimental program. Elastic moduli were obtained for the soil structure with respect to changes in net confining pressure (E) and matric suction (H). Water volumetric moduli associated with changes in net confining pressure (Ew) and matric suction (Hw) were also obtained from the shearing–infiltration tests. Water volumetric strain and pore-water pressure during the shearing–infiltration tests were computed based on volume change theory. This paper presents the significance of obtaining the parameter Hw from an appropriate scanning curve of a soil-water characteristic curve (SWCC) for the computation of water volumetric strain and pore-water pressure changes during a shearing–infiltration test. The appropriate scanning curve should be obtained from the wetting curve of the SWCC at the matric suction where the infiltration test commences.Key words: infiltration, matric suction, triaxial, unsaturated soils, pore-water pressure, water volume change.

1995 ◽  
Vol 32 (5) ◽  
pp. 749-766 ◽  
Author(s):  
Harianto Rahardjo ◽  
Delwyn G. Fredlund

An experimental program was designed to study the behavior of unsaturated soils during undrained loading and consolidation. A Ko cylinder was designed and built for the testing program. Simultaneous measurements of pore-air and pore-water pressures could be made throughout a soil specimen using this Ko cylinder. Four types of tests were performed on a silty sand. These are (1) undrained loading tests where both the air and water are not allowed to drain, (2) constant water content tests where only the water phase is not allowed to drain, (3) consolidation tests where both the air and water phases are allowed to drain, and (4) increasing matric suction tests. Undrained loading tests or constant water content loading tests were conducted for measuring the pore pressure parameters for the unsaturated soil. Drained tests consisting of either consolidation tests or increasing matric suction tests were conducted to study the pore pressure distribution and volume change behavior throughout an unsaturated soil during a transient process. The experimental pore pressure parameters obtained from the undrained loadings and constant water content leadings agreed reasonably well with theory. The pore-air pressure was found to dissipate instantaneously when the air phase is continuous. The pore-water pressure dissipation during the consolidation test was found to be faster than the pore-water pressure decrease during the increasing matric suction test. The differing rates of dissipation were attributed to the different coefficients of water volume change for each of the tests. The water volume changes during the consolidation test were considerably smaller than the water volume changes during the increasing matric suction tests for the same increment of pressure change. Key words : consolidation, Ko loading, matric suction, pore-air pressures, pore-water pressures, unsaturated soils


2002 ◽  
Vol 39 (6) ◽  
pp. 1427-1432 ◽  
Author(s):  
Inge Meilani ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong ◽  
Delwyn G Fredlund

A modified triaxial apparatus with mini suction probes was fabricated to study the matric suction along the specimen height during unsaturated triaxial testing. Three mini suction probes were placed at 3/4, 1/2, and 1/4 height of the specimen, each at 120° apart in the lateral direction. This paper presents the development of the mini probe for matric suction measurements. Evaluation of the performance shows that the fabricated mini probe provides a rapid response and accurate reading under negative and positive pore-water pressure changes. Matric suctions as high as 400 kPa were successfully measured on soil specimens over a time span of 15 h. On the other hand, the mini suction probes were also found to be able to measure a matric suction of 200 kPa for a longer period of 155 h.Key words: matric suction, mini suction probe, triaxial, unsaturated soils, mid-height pore-water pressure measurement.


Author(s):  
Ali Murtaza Rasool ◽  
Jiro Kuwano

An experimental series of shearing tests with water infiltration were performed on compacted unsaturated soil to simulate the behavior of shallow slope failures. Soil samples were compacted at moisture contents from dry to wet of optimum moisture content with the degree of saturation varying from 24.0% to 59.5% while maintaining the degree of compaction at 80%. Two series of shearing with infiltration tests were performed in this study. In Series-I, just before the start of shearing, matric suction was decreased by increasing pore water pressure to start water infiltration i.e. shearing is carried simultaneously with water infiltration. In Series-II, the soil was first sheared with drained pore air and undrained pore water to pre-defined value of deviatoric stress, after which matric suction was decreased by increasing pore water pressure to start water infiltration and shearing is performed by keeping deviatoric stress constant on the specimen. The test results showed that the decrease in matric suction has an effect on the volume of infiltrated water and degree of saturation. The soil slopes compacted on the dry side of optimum moisture content showed better performance than other soils, they require more decrease in matric suction to start water infiltration and showed higher deviatoric stress. In addition to this, water infiltration alone can cause the failure of shallow slopes without having to have any further loading.


2018 ◽  
Vol 4 (4) ◽  
pp. 755
Author(s):  
Lei Sun

The effect of variable confining pressure (VCP) on the cyclic deformation and cyclic pore water pressure in K0-consolidated saturated soft marine clay were investigated with the help of the cyclic stress-controlled advanced dynamic triaxial test in undrained condition. The testing program encompassed three cyclic deviator stress ratios, CSR=0.189, 0.284 and 0.379 and three stress path inclinations ηampl=3,1 and 0.64. All tests with constant confining pressure (CCP) and variable confining pressure (VCP) have identical initial stress and average stress. The results were analyzed in terms of the accumulative normalized excess pore water pressure rqu recorded at the end of each stress cycle and permanent axial strain, as well as resilient modulus. Limited data suggest that these behavior are significantly affected by both of the VCP and CSR. For a given value of VCP, both of the pore water pressure rqu and permanent axial strains are consistently increase with the increasing values of CSR. However, for a given value of CSR, the extent of the influence of VCP and the trend is substantially depend on the CSR.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Qizhi Hu ◽  
Qiang Zou ◽  
Zhigang Ding ◽  
Zhaodong Xu

The excavation unloading of deep foundation pits in soft soil areas often produces negative excess pore water pressure. The rebound deformation of soil on the excavation surface of the foundation pit can be predicted reliably through the accurate expression of relevant variation laws. In combination with the principle of effective stress and the general equation of unidirectional seepage consolidation, an equation for calculating the rebound deformation from the bottom in the process of foundation pit excavation unloading was obtained. Additionally, a triaxial unloading test was adopted to simulate the excavation unloading processes for actual foundation pit engineering. After studying the variation law of the excess pore water pressure generated by excavation unloading, it was found that the negative excess pore water pressure increased with increasing unloading rate, while the corresponding peak value decreased with increasing confining pressure. The equation for rebound calculation was verified through a comparison with relevant measured data from actual engineering. Therefore, it is considered that the equation can reliably describe the rebound deformation law of the base. This paper aims to guide the design and construction of deep foundation pits in soft soil areas.


2007 ◽  
Vol 44 (3) ◽  
pp. 266-275 ◽  
Author(s):  
Trinh Minh Thu ◽  
Harianto Rahardjo ◽  
Eng-Choon Leong

Measurement of the soil-water characteristic curve (SWCC) in the laboratory is commonly conducted under zero confining pressure. However, in the field, the soil is under a confining stress. Therefore, it is important to study the effects of the confining stress on SWCC. In addition, the consolidation curve is normally generated under saturated conditions. However, the soil above the water table is usually unsaturated. Hence, it is also necessary to investigate the effects of matric suction on the characteristics of the consolidation curves. This paper presents the SWCCs under different net confining stresses and the isotropic consolidation curves under different matric suctions that describe the volume change characteristics of unsaturated soils with respect to stress state variables, net normal stress, and matric suction. A series of SWCCs was determined for statically compacted silt specimens in a triaxial cell apparatus under different net confining stresses. Isotropic consolidation tests under different matric suctions were also carried out. The results of the SWCC tests show that the air-entry value increased with increasing net confining stress. The yield points (i.e., yield suction, s0) obtained from the SWCC tests also increased with increasing net confining stress. The results of isotropic consolidation tests indicate the strong influence of matric suction on compressibility and stiffness of the compacted silt specimens.Key words: soil-water characteristic curve, isotropic consolidation, pore-water pressure, volume change, NTU mini suction probe, matric suction.


2002 ◽  
Vol 39 (6) ◽  
pp. 1341-1357 ◽  
Author(s):  
Jean-Marie Fleureau ◽  
Jean-Claude Verbrugge ◽  
Pedro J Huergo ◽  
António Gomes Correia ◽  
Siba Kheirbek-Saoud

A relatively large number of drying and wetting tests have been performed on clayey soils compacted at the standard or modified Proctor optimum water content and maximum density and compared with tests on normally consolidated or overconsolidated soils. The results show that drying and wetting paths on compacted soils are fairly linear and reversible in the void ratio or water content versus negative pore-water pressure planes. On the wet side of the optimum, the wetting paths are independent of the compaction water content and can be approached by compaction tests with measurement of the negative pore-water pressure. Correlations have been established between the liquid limit of the soils and such properties as the optimum water content and negative pore-water pressure, the maximum dry density, and the swelling or drying index. Although based on a limited number of tests, these correlations provide a fairly good basis to model the drying–wetting paths when all the necessary data are not available.Key words: compaction, unsaturated soils, clays, drying, wetting, Proctor conditions.


2015 ◽  
Vol 23 (2) ◽  
pp. 9-18 ◽  
Author(s):  
Mohammed Y. Fattah ◽  
Raid R. Al-Omari ◽  
Haifaa A. Ali

Abstract In this paper, a method for the treatment of the swelling of expansive soil is numerically simulated. The method is simply based on the embedment of a geogrid (or a geomesh) in the soil. The geogrid is extended continuously inside the volume of the soil where the swell is needed to be controlled and orientated towards the direction of the swell. Soils with different swelling potentials are employed: bentonite base-Na and bentonite base-Ca samples in addition to kaolinite mixed with bentonite. A numerical analysis was carried out by the finite element method to study the swelling soil's behavior and investigate the distribution of the stresses and pore water pressures around the geocells beneath the shallow footings. The ABAQUS computer program was used as a finite element tool, and the soil is represented by the modified Drucker-Prager/cap model. The geogrid surrounding the geocell is assumed to be a linear elastic material throughout the analysis. The soil properties used in the modeling were experimentally obtained. It is concluded that the degree of saturation and the matric suction (the negative pore water pressure) decrease as the angle of friction of the geocell column material increases due to the activity of the sand fill in the dissipation of the pore water pressure and the acceleration of the drainage through its function as a drain. When the plasticity index and the active depth (the active zone is considered to be equal to the overall depth of the clay model) increase, the axial movement (swelling movement) and matric suction, as a result of the increase in the axial forces, vary between this maximum value at the top of the layer and the minimum value in the last third of the active depth and then return to a consolidation at the end of the depth layer.


2007 ◽  
Vol 44 (10) ◽  
pp. 1148-1156 ◽  
Author(s):  
Matthew Helinski ◽  
Andy Fourie ◽  
Martin Fahey ◽  
Mostafa Ismail

During the placement of fine-grained cemented mine backfill, the high placement rates and low permeability often result in undrained self-weight loading conditions, when assessed in the conventional manner. However, hydration of the cement in the backfill results in a net volume reduction—the volume of the hydrated cement is less than the combined volume of the cement and water prior to hydration. Though the volume change is small, it occurs in conjunction with the increasing stiffness of the cementing soil matrix, and the result in certain circumstances can be a significant reduction in pore-water pressure as hydration proceeds. In this paper, the implications of this phenomenon in the area of cemented mine backfill are explored. An analytical model is developed to quantify this behaviour under undrained boundary conditions. This model illustrates that the pore-water pressure change is dependent on the amount of volume change associated with the cement hydration, the incremental stiffness change of the soil, and the porosity of the material. Experimental techniques for estimating key characteristics associated with this mechanism are presented. Testing undertaken on two different cement–minefill combinations indicated that the rate of hydration and volumes of water consumed during hydration were unique for each cement–tailings combination, regardless of mix proportions.


Sign in / Sign up

Export Citation Format

Share Document