scholarly journals Investigation of a possible submarine landslide at the Var delta front (Nice continental slope, southeast France)

2010 ◽  
Vol 47 (4) ◽  
pp. 486-496 ◽  
Author(s):  
N. Sultan ◽  
B. Savoye ◽  
G. Jouet ◽  
D. Leynaud ◽  
P. Cochonat ◽  
...  

The Var prodelta progrades across a straight, narrow shelf (less than 2 km wide) with a very steep continental slope reaching locally more than 30°. Historically, the Var delta front is sadly famous for the 1979 catastrophic submarine landslide that resulted in several casualties and infrastructural damage. Geotechnical and geophysical investigations carried out in late 2007 to the east of the 1979 landslide scar provide evidence for the possible occurrence of a new important sedimentary collapse and submarine landslide. Geophysical data acquired in the area show the presence of several seafloor morphological steps rooted to shallow subsurface seismic reflections. Moreover, in situ piezocone measurements demonstrate the presence of several shear zones at the border of the shelf break at different depths below the seafloor. The aim of this technical note is to present and discuss acquired geotechnical and geophysical data in terms of failure mechanisms and submarine landslides. Both geophysical and geotechnical data suggest the start-up of a progressive failure mechanism and reveal the possible occurrence of a submarine landslide and the urgent need for mitigation procedures.

Author(s):  
Gayaz S. Khakimzyanov ◽  
Oleg I. Gusev ◽  
Sofya A. Beizel ◽  
Leonid B. Chubarov ◽  
Nina Yu. Shokina

AbstractNumerical technique for studying surface waves appearing under the motion of a submarine landslide is discussed. This technique is based on the application of the model of a quasi-deformable landslide and two shallow water models, namely, the classic (dispersion free) one and the completely nonlinear dispersive model of the second hydrodynamic approximation. Numerical simulation of surface waves generated by a large model landslide on the continental slope of the Black Sea near the Russian coast is performed. It is shown that the dispersion has a significant impact on the picture of propagation of tsunami waves on sufficiently long paths.


Author(s):  
David R. Tappin

Most tsunamis are generated by earthquakes, but in 1998, a seabed slump offshore of northern Papua New Guinea (PNG) generated a tsunami up to 15 m high that killed more than 2,200 people. The event changed our understanding of tsunami mechanisms and was forerunner to two decades of major tsunamis that included those in Turkey, the Indian Ocean, Japan, and Sulawesi and Anak Krakatau in Indonesia. PNG provided a context to better understand these tsunamis as well as older submarine landslide events, such as Storegga (8150 BP); Alika 2 in Hawaii (120,000 BP), and Grand Banks, Canada (1929), together with those from dual earthquake/landslide mechanisms, such as Messina (1908), Puerto Rico (1928), and Japan (2011). PNG proved that submarine landslides generate devastating tsunamis from failure mechanisms that can be very different, whether singly or in combination with earthquakes. It demonstrated the critical importance of seabed mapping to identify these mechanisms as well as stimulated the development of new numerical tsunami modeling methodologies. In combination with other recent tsunamis, PNG demonstrated the critical importance of these events in advancing our understanding of tsunami hazard and risk. This review recounts how, since 1998, understanding of the tsunami hazard from submarine landslides has progressed far beyond anything considered possible at that time. ▪ For submarine landslide tsunamis, advances in understanding take place incrementally, usually in response to major, sometimes catastrophic, events. ▪ The Papua New Guinea tsunami in 1998, when more than 2,200 people perished, was a turning point in first recognizing the significant tsunami hazard from submarine landslides. ▪ Over the past 2 to 3 years advances have also been made mainly because of improvements in numerical modeling based on older tsunamis such as Grand Banks in 1929, Messina in 1908, and Storegga at 8150 BP. ▪ Two recent tsunamis in late 2018, in Sulawesi and Anak Krakatau, Indonesia, where several hundred people died, were from very unusual landslide mechanisms—dual (strike-slip and landslide) and volcanic collapse—and provide new motivations for understanding these tsunami mechanisms. ▪ This is a timely, state of the art review of landslide tsunamis based on recent well-studied events and new research on older ones, which provide an important context for the recent tsunamis in Indonesia in 2018. Expected final online publication date for the Annual Review of Earth and Planetary Sciences, Volume 49 is May 2021. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


2021 ◽  
Author(s):  
Jan Michalek ◽  
Kuvvet Atakan ◽  
Christian Rønnevik ◽  
Helga Indrøy ◽  
Lars Ottemøller ◽  
...  

<p>The European Plate Observing System (EPOS) is a European project about building a pan-European infrastructure for accessing solid Earth science data, governed now by EPOS ERIC (European Research Infrastructure Consortium). The EPOS-Norway project (EPOS-N; RCN-Infrastructure Programme - Project no. 245763) is a Norwegian project funded by National Research Council. The aim of the Norwegian EPOS e‑infrastructure is to integrate data from the seismological and geodetic networks, as well as the data from the geological and geophysical data repositories. Among the six EPOS-N project partners, four institutions are providing data – University of Bergen (UIB), - Norwegian Mapping Authority (NMA), Geological Survey of Norway (NGU) and NORSAR.</p><p>In this contribution, we present the EPOS-Norway Portal as an online, open access, interactive tool, allowing visual analysis of multidimensional data. It supports maps and 2D plots with linked visualizations. Currently access is provided to more than 300 datasets (18 web services, 288 map layers and 14 static datasets) from four subdomains of Earth science in Norway. New datasets are planned to be integrated in the future. EPOS-N Portal can access remote datasets via web services like FDSNWS for seismological data and OGC services for geological and geophysical data (e.g. WMS). Standalone datasets are available through preloaded data files. Users can also simply add another WMS server or upload their own dataset for visualization and comparison with other datasets. This portal provides unique way (first of its kind in Norway) for exploration of various geoscientific datasets in one common interface. One of the key aspects is quick simultaneous visual inspection of data from various disciplines and test of scientific or geohazard related hypothesis. One of such examples can be spatio-temporal correlation of earthquakes (1980 until now) with existing critical infrastructures (e.g. pipelines), geological structures, submarine landslides or unstable slopes.  </p><p>The EPOS-N Portal is implemented by adapting Enlighten-web, a server-client program developed by NORCE. Enlighten-web facilitates interactive visual analysis of large multidimensional data sets, and supports interactive mapping of millions of points. The Enlighten-web client runs inside a web browser. An important element in the Enlighten-web functionality is brushing and linking, which is useful for exploring complex data sets to discover correlations and interesting properties hidden in the data. The views are linked to each other, so that highlighting a subset in one view automatically leads to the corresponding subsets being highlighted in all other linked views.</p>


2021 ◽  
Author(s):  
Xiaoyi Pan ◽  
Linlin Li ◽  
Hong Phuong Nguyen ◽  
Dawei Wang

<p>The 109 meridian fault is located in the west of the South China Sea (SCS) connecting to the offshore Red River Shear Zone. The evolution processes of the 109 meridian fault: striking-uplifting-subsidence of adjacent basin led to a nearly 1000m sharp bathymetric difference in the offshore region of central Vietnam. Combined with the high sediment input from numerous montane rivers in the rising hinterland, the continental slope near central Vietnam possesses the ideal condition for developing submarine landslides. Seismic data indicates many submarine landslides were developed along the steep continental slope. In this study, we analyze the possible trigger mechanisms of these landslides based on the local geological background and sedimentary environment, and assess their tsunamigenic potential along the coast of the Southern Central Vietnam (SCV). We point out that the landslide failures in this region could be triggered by several mechanisms, including seismic activities in the offshore SCV, volcanic activities, gas seep on the slope and the relative sea-level changes. The seismic and volcanic activities are related directly to the late middle Miocene volcanism generated by the change from left- to right-lateral motion on the Red River Shear Zone, showing that tectonism play a significant role in the generation of submarine landslide in the western continental slope of the SCS. To estimate the impact of tsunami waves on SCV coastline, we use two numerical models—NHWAVE and FUNWAVE-TVD to model 4 representative landslides with volume ranging between 1-4km<sup>3</sup> and water depth of 300-1000m. The submarine landslides were treated as rigid slump and deformable slide corresponding to two different sedimentary environments. Our results show that the tsunami waves generated by rigid slump can reach up to 20m height in the landslide source area and arrive earlier to the coast of SCV than waves generated by deformable slide. Among these simulated scenarios, tsunami waves generated by the worst-case scenario arrive at the populated cities including Quy Nhơn (109.3°E,13.77°N), Tuy Hòa (109.37°E ,13.08°N) and Vung Ro Bay (109.43°E,12.86°N) in less than 25mins with maximum height of 5m. It is worth mentioning that the Vung Ro Bay will be affected by tsunami waves in all simulated scenarios. We quantify the influence of landslide characteristics (volume, water depth and material) and highlight the local effect of coastal bathymetry on the tsunami generation and propagation which lead to different hazard level of SCV coast.</p>


Geosciences ◽  
2018 ◽  
Vol 9 (1) ◽  
pp. 10 ◽  
Author(s):  
Brandi Lenz ◽  
Derek Sawyer ◽  
Benjamin Phrampus ◽  
Kathy Davenport ◽  
Ashley Long

A series of large blocks from the 44-North Slide, offshore Oregon, impacted the seafloor with sufficient force to induce a broad zone of deformation. In 2017, we acquired a seismic profile from the headwall area to the outer toe of this slide. Previous work identified this slide, but it has not been imaged at high resolution before this survey. A striking surficial feature is a collection of blocks that lie downslope from an amphitheater-shaped headwall. The blocks traveled up to 20-km horizontally and about 1200-m vertically down a 13° slope and now cover an area of ~100 km2. The blocks have rough and angular edges that extend up to 400-m above the surrounding seafloor. Seaward of the blocks, a 10-km zone of sediment is deformed, horizontally shortened by 8%. We interpret the strain field to be a result of the dynamic impact forces of the slide. This suggests a high-mobility failure with tsunamigenic potential. It is unclear what preconditioned and triggered this event, however, earthquake-induced failure is one possibility. Gas hydrate dissociation may have also played a role due to the presence of a bottom-simulating reflector beneath the source area. This study underscores the need to understand the dynamic processes of submarine landslides to more accurately estimate their societal impacts.


2016 ◽  
Vol 63 (5) ◽  
pp. 631-652 ◽  
Author(s):  
S. Clarke ◽  
T. Hubble ◽  
J. Webster ◽  
D. Airey ◽  
E. De Carli ◽  
...  

1993 ◽  
Vol 30 (2) ◽  
pp. 297-307 ◽  
Author(s):  
Rui Chen ◽  
W. C. Brisbin ◽  
B. Stimpson

Mining-induced deformation of potash yield pillars in the Cominco potash mine at Vanscoy, Saskatchewan, has been documented by mapping deformational structures, determining changes in pillar width and in thicknesses of potash and interbedded clay layers, and analyses of rock fabrics in samples collected from three yield pillars. Pillar deformation over a period of 8 years can be shown to have involved progressive bulk rock flattening, followed by development of shear zones at pillar corners, development of shear wedges at pillar margins, and detachment of these wedges into adjacent rooms. Furthermore, this sequence appears to be repetitive. Strain in halite involves fracturing and displacement and rotation of fragments, strain in sylvite is continuous, and grain boundary sliding has been an important mechanism in the deformation. Although the fabric anisotropy cannot be used to assess total bulk rock strain, the component of strain related to sylvite shape change has been examined during progressive failure of the pillars. The values of strain in the principal strain directions based on sylvite shape are estimated as 42% shortening in the subvertical direction, 37% subhorizontal elongation perpendicular to the original openings, and 25% subhorizontal elongation parallel to the original openings. Key words : yield pillar, potash, fabric analysis, induced deformation.


1994 ◽  
Vol 715 (1 Natural Gas H) ◽  
pp. 381-391 ◽  
Author(s):  
JAMES M. BROOKS ◽  
AUBREY L. ANDERSON ◽  
ROGER SASSEN ◽  
MAHLON C. KENNICUTT ◽  
NORMAN L. GUINASSO

Sign in / Sign up

Export Citation Format

Share Document