Analytical solution for heat and moisture diffusion in layered materials

2010 ◽  
Vol 47 (6) ◽  
pp. 595-608 ◽  
Author(s):  
Jeongwoo Lee ◽  
Ji-Tae Kim ◽  
Il-Moon Chung ◽  
Nam Won Kim

The study of heat and moisture flows in multiple layers of different materials that make up the unsaturated zone is of great importance when characterizing the behaviour of these materials. In the present paper, analytical solutions of the one-dimensional heat and moisture coupled diffusion problem for layered materials under two different sets of boundary conditions are proposed. The coupled flow of heat and moisture are assumed to follow the theory of Philip and De Vries, and the solutions are derived analytically using integral transform methods. A comparison between the analytical and numerical solutions for one example problem shows satisfactory results. Furthermore, a procedure is presented for estimating heat and moisture distribution profiles in any layered materials using the derived analytical solutions. It is expected that the proposed analytical solutions will be used effectively for preliminary analyses of coupled heat and moisture movements in unsaturated porous media.

2018 ◽  
Vol 140 (12) ◽  
Author(s):  
Xue-Yang Zhang ◽  
Yi Peng ◽  
Xian-Fang Li

In this paper, a non-Fourier model of heat conduction and moisture diffusion coupling is proposed. We study a hygrothermal elastic problem within the framework of time-fractional calculus theory for a centrally symmetric sphere subjected to physical heat and moisture flux at its surface. Analytic expressions for transient response of temperature change, moisture distribution, displacement, and stress components in the sphere are obtained for heat/moisture flux pulse and constant heat/moisture flux at the sphere's surface, respectively, by using the integral transform method. Numerical results are calculated and the effects of fractional order on temperature field, moisture distribution, and hygrothermal stress components are illustrated graphically. Subdiffusive and super-diffusive transport coupling behavior as well as wave-like behavior are shown. When fractional-order derivative reduces to first-order derivative, the usual heat and moisture coupling is recovered, which obeys Fourier heat conduction and Fick's moisture diffusion.


2021 ◽  
Author(s):  
Ping-Cheng Hsieh ◽  
Tzu-Ting Huang

Abstract. This study discussed water storage in aquifers of hillslopes under temporally varied rainfall recharge by employing a hillslope-storage equation to simulate groundwater flow. The hillslope width was assumed to vary exponentially to denote the following complex hillslope types: uniform, convergent, and divergent. Both analytical and numerical solutions were acquired for the storage equation with a recharge source. The analytical solution was obtained using an integral transform technique. The numerical solution was obtained using a finite difference method in which the upwind scheme was used for space derivatives and the third-order Runge–Kutta scheme was used for time discretization. The results revealed that hillslope type significantly influences the drains of hillslope storage. Drainage was the fastest for divergent hillslopes and the slowest for convergent hillslopes. The results obtained from analytical solutions require the tuning of a fitting parameter to better describe the groundwater flow. However, a gap existed between the analytical and numerical solutions under the same scenario owing to the different versions of the hillslope-storage equation. The study findings implied that numerical solutions are superior to analytical solutions for the nonlinear hillslope-storage equation, whereas the analytical solutions are better for the linearized hillslope-storage equation. The findings thus can benefit research on and have application in soil and water conservation.


2017 ◽  
Vol 42 (1) ◽  
pp. 68-94 ◽  
Author(s):  
Suelen Gasparin ◽  
Marx Chhay ◽  
Julien Berger ◽  
Nathan Mendes

This work is devoted to proposing a hybrid numerical–analytical method to address the problem of heat and moisture transfer in porous soils. Several numerical and analytical models have been used to study heat and moisture transfer. The complexity of the coupled transfer in soils is such that analytical solutions exist only for limited problems, while numerical solutions can deal with more realistic ones but at a higher computational cost. Therefore, we propose to implement analytical solutions where variations of temperature and moisture content are known to be almost nonvarying, while the numerical solution is implemented in the remaining region, near the boundaries. The coupling between solutions is performed assuming the continuity of both fields and fluxes at each interface. This strategy allows assuring the physical phenomenon occurring at the interface. Numerical experiments are performed, showing the accuracy, the efficiency, and the great potential of the method regarding applications in nonlinear soil problems.


2015 ◽  
Vol 12 (9) ◽  
pp. 8675-8726
Author(s):  
J.-S. Chen ◽  
C.-P. Liang ◽  
C.-W. Liu ◽  
L. Y. Li

Abstract. A parsimonious analytical model for rapidly predicting the long-term plume behavior of decaying contaminant such as radionuclide and dissolved chlorinated solvent is presented in this study. Generalized analytical solutions in compact format are derived for the two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions involving an arbitrary number of species in groundwater system. The solution techniques involve the sequential applications of the Laplace, finite Fourier cosine, and generalized integral transforms to reduce the coupled partial differential equation system to a set of linear algebraic equations. The system of algebraic equations is next solved for each species in the transformed domain, and the solutions in the original domain are then obtained through consecutive integral transform inversions. Explicit form solutions for a special case are derived using the generalized analytical solutions and are verified against the numerical solutions. The analytical results indicate that the parsimonious analytical solutions are robust and accurate. The solutions are useful for serving as simulation or screening tools for assessing plume behaviors of decaying contaminants including the radionuclides and dissolved chlorinated solvents in groundwater systems.


2016 ◽  
Vol 20 (2) ◽  
pp. 733-753 ◽  
Author(s):  
Jui-Sheng Chen ◽  
Ching-Ping Liang ◽  
Chen-Wuing Liu ◽  
Loretta Y. Li

Abstract. The two-dimensional advection-dispersion equations coupled with sequential first-order decay reactions involving arbitrary number of species in groundwater system is considered to predict the two-dimensional plume behavior of decaying contaminant such as radionuclide and dissolved chlorinated solvent. Generalized analytical solutions in compact format are derived through the sequential application of the Laplace, finite Fourier cosine, and generalized integral transform to reduce the coupled partial differential equation system to a set of linear algebraic equations. The system of algebraic equations is next solved for each species in the transformed domain, and the solutions in the original domain are then obtained through consecutive integral transform inversions. Explicit form solutions for a special case are derived using the generalized analytical solutions and are compared with the numerical solutions. The analytical results indicate that the analytical solutions are robust, accurate and useful for simulation or screening tools to assess plume behaviors of decaying contaminants.


1985 ◽  
Vol 63 (7) ◽  
pp. 973-975
Author(s):  
Jiben Sidhanta ◽  
Rajkumar Roychoudhury

Assuming Feynman scaling, we analytically solve the coupled diffusion equation for hadrons in air showers. We have also calculated the muon density using our analytical solutions. Our results are in agreement with numerical solutions and also with experimental results.


Author(s):  
Robert L. McMasters ◽  
Filippo de Monte ◽  
James V. Beck ◽  
Donald E. Amos

This paper provides a solution for two-dimensional heating over a rectangular region on a homogeneous plate. It has application to verification of numerical conduction codes as well as direct application for heating and cooling of electronic equipment. Additionally, it can be applied as a direct solution for the inverse heat conduction problem, most notably used in thermal protection systems for re-entry vehicles. The solutions used in this work are generated using Green’s functions. Two approaches are used which provide solutions for either semi-infinite plates or finite plates with isothermal conditions which are located a long distance from the heating. The methods are both efficient numerically and have extreme accuracy, which can be used to provide additional solution verification. The solutions have components that are shown to have physical significance. The extremely precise nature of analytical solutions allows them to be used as prime standards for their respective transient conduction cases. This extreme precision also allows an accurate calculation of heat flux by finite differences between two points of very close proximity which would not be possible with numerical solutions. This is particularly useful near heated surfaces and near corners. Similarly, sensitivity coefficients for parameter estimation problems can be calculated with extreme precision using this same technique. Another contribution of these solutions is the insight that they can bring. Important dimensionless groups are identified and their influence can be more readily seen than with numerical results. For linear problems, basic heating elements on plates, for example, can be solved to aid in understanding more complex cases. Furthermore these basic solutions can be superimposed both in time and space to obtain solutions for numerous other problems. This paper provides an analytical two-dimensional, transient solution for heating over a rectangular region on a homogeneous square plate. Several methods are available for the solution of such problems. One of the most common is the separation of variables (SOV) method. In the standard implementation of the SOV method, convergence can be slow and accuracy lacking. Another method of generating a solution to this problem makes use of time-partitioning which can produce accurate results. However, numerical integration may be required in these cases, which, in some ways, negates the advantages offered by the analytical solutions. The method given herein requires no numerical integration; it also exhibits exponential series convergence and can provide excellent accuracy. The procedure involves the derivation of previously-unknown simpler forms for the summations, in some cases by virtue of the use of algebraic components. Also, a mathematical identity given in this paper can be used for a variety of related problems.


Author(s):  
Anthony M.J Davis ◽  
Stefan G Llewellyn Smith

Motivated by problems involving diffusion through small gaps, we revisit two-dimensional eigenvalue problems with localized perturbations to Neumann boundary conditions. We recover the known result that the gravest eigenvalue is O (|ln  ϵ | −1 ), where ϵ is the ratio of the size of the hole to the length-scale of the domain, and provide a simple and constructive approach for summing the inverse logarithm terms and obtaining further corrections. Comparisons with numerical solutions obtained for special geometries, both for the Dirichlet ‘patch problem’ where the perturbation to the boundary consists of a different boundary condition and for the gap problem, confirm that this approach is a simple way of obtaining an accurate value for the gravest eigenvalue and hence the long-term outcome of the underlying diffusion problem.


2015 ◽  
Vol 3 ◽  
pp. 89-101
Author(s):  
V.C. de Almeida Cruz ◽  
J.M.P.Q. Delgado ◽  
A.G. Barbosa de Lima ◽  
M.M. Silva Nóbrega ◽  
L.H. de Carvalho ◽  
...  

This paper presents a theoretical and experimental study about water absorption in unsaturated polyester polymer composites reinforced with vegetable fibers, with particular reference to macambira fiber. A mathematical modeling based on the liquid diffusion theory has been proposed and numerical procedures using the finite volume technique are presented and discussed. Results of the water absorption kinetic and moisture content distribution for the polymer composites are shown and analyzed. The knowledge of moisture distribution inside the composite is essential for determination of areas that may show delamination problems (moisture induced degradation) due to the weakness of the fiber-matrix interface and consequently reduction in the mechanical properties of the composites.


Sign in / Sign up

Export Citation Format

Share Document