Debris flow triggering by impulsive loading: mechanical modelling and case studies

1992 ◽  
Vol 29 (3) ◽  
pp. 345-352 ◽  
Author(s):  
M. J. Bovis ◽  
B. R. Dagg

A mechanism is proposed by which debris flows can be triggered through impulsive loading. Momentum transferred from hillslope failures to steep stream bed materials may be sufficient to initiate a debris flow where one may not otherwise occur. An important parameter in the momentum transfer is the planimetric angle between the slide path axis and the stream channel axis. Preliminary stability equations for both drained and undrained loading are developed from formulae commonly used to assess stream channel stability. Case studies from two basins in the southern Coast Mountains of British Columbia are used to illustrate the mechanisms. Key words : debris flow, triggering, mechanisms, rock slide, debris slide, Coast Mountains.

2003 ◽  
Vol 69 (3-4) ◽  
pp. 309-330 ◽  
Author(s):  
Gonghui Wang ◽  
Kyoji Sassa ◽  
Hiroshi Fukuoka

Water ◽  
2018 ◽  
Vol 10 (7) ◽  
pp. 950 ◽  
Author(s):  
Theo van Asch ◽  
Bin Yu ◽  
Wei Hu

Many studies which try to analyze conditions for debris flow development ignore the type of initiation. Therefore, this paper deals with the following questions: What type of hydro-mechanical triggering mechanisms for debris flows can we distinguish in upstream channels of debris flow prone gullies? Which are the main parameters controlling the type and temporal sequence of these triggering processes, and what is their influence on the meteorological thresholds for debris flow initiation? A series of laboratory experiments were carried out in a flume 8 m long and with a width of 0.3 m to detect the conditions for different types of triggering mechanisms. The flume experiments show a sequence of hydrological processes triggering debris flows, namely erosion and transport by intensive overland flow and by infiltrating water causing failure of channel bed material. On the basis of these experiments, an integrated hydro-mechanical model was developed, which describes Hortonian and saturation overland flow, maximum sediment transport, through flow and failure of bed material. The model was calibrated and validated using process indicator values measured during the experiments in the flume. Virtual model simulations carried out in a schematic hypothetical source area of a catchment show that slope angle and hydraulic conductivity of the bed material determine the type and sequence of these triggering processes. It was also clearly demonstrated that the type of hydrological triggering process and the influencing geometrical and hydro-mechanical parameters may have a great influence on rainfall intensity-duration threshold curves for the start of debris flows.


2014 ◽  
Vol 2 (1) ◽  
pp. 315-346
Author(s):  
J.-C. Chen ◽  
M.-R. Chuang

Abstract. Three debris-flow gullies, the Hong-Shui-Xian, Sha-Xin-Kai, and the Xin-Kai-Dafo gullies, located in the Shinfa area of southern Taiwan were selected as case studies of the discharge of landslide-induced debris flows caused by Typhoon Morakot in 2009. The inundation characteristics of the three debris flows, such as the debris-flow volume, the deposition area, maximum flow depth, and deposition depth, were collected by field investigations and simulated using the numerical modeling software FLO-2D. The discharge coefficient cb, defined as the ratio of the debris-flow discharge Qdp to the water-flow discharge Qwp, was proposed to determine Qdp, and Qwp was estimated by a rational equation. Then, cb was calibrated by a comparison between the field investigation and the numerical simulation of the inundation characteristics of debris flows. Our results showed that the values of cb range from 6 to 18, and their values are affected by the landslide ratio The empirical relationships between Qdp and Qwp were also presented.


Landslides ◽  
2020 ◽  
Vol 17 (4) ◽  
pp. 913-930 ◽  
Author(s):  
Pierre Friele ◽  
Tom H. Millard ◽  
Andrew Mitchell ◽  
Kate E. Allstadt ◽  
Brian Menounos ◽  
...  

AbstractTwo catastrophic landslides occurred in quick succession on 13 and 16 May 2019, from the north face of Joffre Peak, Cerise Creek, southern Coast Mountains, British Columbia. With headscarps at 2560 m and 2690 m elevation, both began as rock avalanches, rapidly transforming into debris flows along middle Cerise Creek, and finally into debris floods affecting the fan. Beyond the fan margin, a flood surge on Cayoosh Creek reached bankfull and attenuated rapidly downstream; only fine sediment reached Duffey Lake. The toe of the main debris flow deposit reached 4 km from the headscarp, with a travel angle of 0.28, while the debris flood phase reached the fan margin 5.9 km downstream, with a travel angle of 0.22. Photogrammetry indicates the source volume of each event is 2–3 Mm3, with combined volume of 5 Mm3. Lidar differencing, used to assess deposit volume, yielded a similar total result, although error in the depth estimate introduced large volume error masking the expected increase due to dilation and entrainment. The average velocity of the rock avalanche-debris flow phases, from seismic analysis, was ~ 25–30 m/s, and the velocity of the 16 May debris flood on the upper fan, from super-elevation and boulder sizes, was 5–10 m/s. The volume of debris deposited on the fan was ~ 104 m3, 2 orders of magnitude less than the avalanche/debris flow phases. Progressive glacier retreat and permafrost degradation were likely the conditioning factors; precursor rockfall activity was noted at least ~6 months previous; thus, the mountain was primed to fail. The 13 May landslide was apparently triggered by rapid snowmelt, with debuttressing triggering the 16 May event.


1985 ◽  
Vol 22 (10) ◽  
pp. 1492-1502 ◽  
Author(s):  
John J. Clague ◽  
S. G. Evans ◽  
Iain G. Blown

A very large debris flow of unusual origin occurred in the basin of Klattasine Creek (southern Coast Mountains, British Columbia) between June 1971 and September 1973. The flow was triggered by the sudden release of up to 1.7 × 106 m3 of water from a moraine-dammed lake at the head of a tributary of Klattasine Creek. Water escaping from the lake mobilized large quantities of unconsolidated sediment in the valley below and thus produced a debris flow that travelled in one or, more likely, several surges 8 km downvalley on an average gradient of 10° to the mouth of the stream. Here, the flow deposited a sheet of coarse bouldery debris up to about 20 m thick, which temporarily blocked Homathko River. Slumps, slides, and debris avalanches occurred on the walls of the valley both during and in years following the debris flow. Several secondary debris flows of relatively small size have swept down Klattasine Creek in the 12–14 years since Klattasine Lake drained.


Sign in / Sign up

Export Citation Format

Share Document