A debris flow triggered by the breaching of a moraine-dammed lake, Klattasine Creek, British Columbia

1985 ◽  
Vol 22 (10) ◽  
pp. 1492-1502 ◽  
Author(s):  
John J. Clague ◽  
S. G. Evans ◽  
Iain G. Blown

A very large debris flow of unusual origin occurred in the basin of Klattasine Creek (southern Coast Mountains, British Columbia) between June 1971 and September 1973. The flow was triggered by the sudden release of up to 1.7 × 106 m3 of water from a moraine-dammed lake at the head of a tributary of Klattasine Creek. Water escaping from the lake mobilized large quantities of unconsolidated sediment in the valley below and thus produced a debris flow that travelled in one or, more likely, several surges 8 km downvalley on an average gradient of 10° to the mouth of the stream. Here, the flow deposited a sheet of coarse bouldery debris up to about 20 m thick, which temporarily blocked Homathko River. Slumps, slides, and debris avalanches occurred on the walls of the valley both during and in years following the debris flow. Several secondary debris flows of relatively small size have swept down Klattasine Creek in the 12–14 years since Klattasine Lake drained.

2021 ◽  
Author(s):  
Luca Crescenzo ◽  
Gaetano Pecoraro ◽  
Michele Calvello ◽  
Richard Guthrie

<p>Debris flows and debris avalanches are rapid to extremely rapid landslides that tend to travel considerable distances from their source areas. Interaction between debris flows and elements at risk along their travel path may result in potentially significant destructive consequences. One of the critical challenges to overcome with respect to debris flow risk is, therefore, the credible prediction of their size, travel path, runout distance, and depths of erosion and deposition. To these purposes, at slope or catchment scale, sophisticated physically-based models, appropriately considering several factors and phenomena controlling the slope failure mechanisms, may be used. These models, however, are computationally costly and time consuming, and that significantly hinders their applicability at regional scale. Indeed, at regional scale, debris flows hazard assessment is usually carried out by means of qualitative approaches relying on field surveys, geomorphological knowledge, geometric features, and expert judgement.</p><p>In this study, a quantitative modelling approach based on cellular automata methods, wherein individual cells move across a digital elevation model (DEM) landscape following behavioral rules defined probabilistically, is proposed and tested. The adopted model, called LABS, is able to estimate erosion and deposition soil volumes along a debris flow path by deploying at the source areas autonomous subroutines, called agents, over a 5 m spatial resolution DEM, which provides the basic information to each agent in each time-step. Rules for scour and deposition are based on mass balance considerations and independent probability distributions defined as a function of slope DEM-derived values and a series of model input parameters. The probabilistic rules defined in the model are based on data gathered for debris flows and debris avalanches that mainly occurred in western Canada. This study mainly addresses the applicability and the reliability of this modelling approach to areas in southern Italy, in Campania region, historically affected by debris flows in pyroclastic soils. To this aim, information on inventoried debris flows is used in different study areas to evaluate the effect on the predictions of the model input parameter values, as well as of different native DEM resolutions.</p>


2007 ◽  
Vol 44 (9) ◽  
pp. 1215-1233 ◽  
Author(s):  
Johannes Koch ◽  
John J Clague ◽  
Gerald D Osborn

The Little Ice Age glacier history in Garibaldi Provincial Park (southern Coast Mountains, British Columbia) was reconstructed using geomorphic mapping, radiocarbon ages on fossil wood in glacier forefields, dendrochronology, and lichenometry. The Little Ice Age began in the 11th century. Glaciers reached their first maximum of the past millennium in the 12th century. They were only slightly more extensive than today in the 13th century, but advanced at least twice in the 14th and 15th centuries to near their maximum Little Ice Age positions. Glaciers probably fluctuated around these advanced positions from the 15th century to the beginning of the 18th century. They achieved their greatest extent between A.D. 1690 and 1720. Moraines were deposited at positions beyond present-day ice limits throughout the 19th and early 20th centuries. Glacier fluctuations appear to be synchronous throughout Garibaldi Park. This chronology agrees well with similar records from other mountain ranges and with reconstructed Northern Hemisphere temperature series, indicating global forcing of glacier fluctuations in the past millennium. It also corresponds with sunspot minima, indicating that solar irradiance plays an important role in late Holocene climate change.


Landslides ◽  
2020 ◽  
Vol 17 (4) ◽  
pp. 913-930 ◽  
Author(s):  
Pierre Friele ◽  
Tom H. Millard ◽  
Andrew Mitchell ◽  
Kate E. Allstadt ◽  
Brian Menounos ◽  
...  

AbstractTwo catastrophic landslides occurred in quick succession on 13 and 16 May 2019, from the north face of Joffre Peak, Cerise Creek, southern Coast Mountains, British Columbia. With headscarps at 2560 m and 2690 m elevation, both began as rock avalanches, rapidly transforming into debris flows along middle Cerise Creek, and finally into debris floods affecting the fan. Beyond the fan margin, a flood surge on Cayoosh Creek reached bankfull and attenuated rapidly downstream; only fine sediment reached Duffey Lake. The toe of the main debris flow deposit reached 4 km from the headscarp, with a travel angle of 0.28, while the debris flood phase reached the fan margin 5.9 km downstream, with a travel angle of 0.22. Photogrammetry indicates the source volume of each event is 2–3 Mm3, with combined volume of 5 Mm3. Lidar differencing, used to assess deposit volume, yielded a similar total result, although error in the depth estimate introduced large volume error masking the expected increase due to dilation and entrainment. The average velocity of the rock avalanche-debris flow phases, from seismic analysis, was ~ 25–30 m/s, and the velocity of the 16 May debris flood on the upper fan, from super-elevation and boulder sizes, was 5–10 m/s. The volume of debris deposited on the fan was ~ 104 m3, 2 orders of magnitude less than the avalanche/debris flow phases. Progressive glacier retreat and permafrost degradation were likely the conditioning factors; precursor rockfall activity was noted at least ~6 months previous; thus, the mountain was primed to fail. The 13 May landslide was apparently triggered by rapid snowmelt, with debuttressing triggering the 16 May event.


2007 ◽  
Vol 26 (3-4) ◽  
pp. 479-493 ◽  
Author(s):  
Gerald Osborn ◽  
Brian Menounos ◽  
Johannes Koch ◽  
John J. Clague ◽  
Vanessa Vallis

2006 ◽  
Vol 43 (6) ◽  
pp. 679-689 ◽  
Author(s):  
K A Simpson ◽  
M Stasiuk ◽  
K Shimamura ◽  
J J Clague ◽  
P Friele

The Mount Meager volcanic complex in southern British Columbia is snow and ice covered and has steep glaciated and unstable slopes of hydrothermally altered volcanic deposits. Three large-volume (>108 m3) volcanic debris flow deposits derived from the Mount Meager volcanic complex have been identified. The volcanic debris flows travelled at least 30 km downstream from the volcanic complex and inundated now populated areas of Pemberton Valley. Clay content and mineralogy of the deposits indicate that the volcanic debris flows were clay-rich (5%–7% clay in the matrix) and derived from hydrothermally altered volcanic material. The youngest volcanic debris flow deposit is interpreted to be associated with the last known volcanic eruption, ~2360 calendar (cal) years BP. The other two debris flows may not have been directly associated with eruptions. Volcanic debris flow hazard inundation maps have been produced using the Geographic Information System (GIS)-based modelling program, LAHARZ. The maps provide estimates of the areas that would be inundated by future moderate to large-magnitude events. Given the available data, the probability of a volcanic debris flow reaching populated areas in Pemberton Valley is ~1 in 2400 years. Additional mapping in the source regions is necessary to determine if sufficient material remains on the volcanic edifice to generate future large-magnitude, clay-rich volcanic debris flows.


Geomorphology ◽  
2010 ◽  
Vol 118 (1-2) ◽  
pp. 207-212 ◽  
Author(s):  
Erik Schiefer ◽  
Marwan A. Hassan ◽  
Brian Menounos ◽  
Channa P. Pelpola ◽  
Olav Slaymaker

1992 ◽  
Vol 95 (1-2) ◽  
pp. 153-167 ◽  
Author(s):  
John J. Clague ◽  
R.W. Mathewes ◽  
W.M. Buhay ◽  
T.W.D. Edwards

1984 ◽  
Vol 21 (3) ◽  
pp. 505-517 ◽  
Author(s):  
D. C. Martin ◽  
D. R. Piteau ◽  
R. A. Pearce ◽  
P. M. Hawley

On the evening of January 23, 1982 a debris flow having an estimated volume of 11 000 m3 occurred in a stream channel on the south slope of Mount Agassiz adjacent to the Mountain Institution of the Correctional Services of Canada. The debris flow was one of many that have contributed to the formation of a large debris fan at the base of the mountain. Debris flows, large rockfalls, and other events can be expected to occur intermittently as part of the ongoing natural erosional processes in steep mountainous terrain.The paper describes the site investigation and analyses carried out and the design and construction of remedial measures to control future debris flows and rockfalls. Remedial measures consisted of improvement of stability of two large rockfall blocks in the debris flow channel using grouted dowels. In addition, two berms and a containment basin were constructed on the debris fan to control future debris flows and rockfalls. Key words: debris flows, debris fan, rockfalls, rock anchors, dowels, containment basin, deflection berm.


Sign in / Sign up

Export Citation Format

Share Document