debris flood
Recently Published Documents


TOTAL DOCUMENTS

31
(FIVE YEARS 13)

H-INDEX

7
(FIVE YEARS 3)

2021 ◽  
pp. 473-489
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Mitra Tanhapour

AbstractIn this chapter, the precipitation threshold at which debris floods occur was evaluated experimentally, and the factors that influence debris flood occurrence, including the bed slope, sediment layer thickness, sediment grain size, length of alluvial flow direction, precipitation intensity, and time of debris flood occurrence, were examined. The impacts of these factors on debris flood initiation were investigated through dimensional analysis. Then, a method was developed to estimate the precipitation intensity threshold based on a set of laboratory tests. Furthermore, different methods for determining the precipitation intensity threshold at which debris floods are initiated were assessed and discussed. The results of the experiments showed that the effect of the sediment layer thickness on debris flood occurrence can be ignored. Moreover, by independently evaluating the effect of each factor on debris flood occurrence, it was found that the sediment length and average diameter of sediments are influential to debris flood initiation. The results of this research provide a better understanding of debris flood mechanisms and occurrence thresholds of debris floods and can be employed to prepare a forecasting model.


Hydrology ◽  
2021 ◽  
Vol 8 (3) ◽  
pp. 122
Author(s):  
Sebastián Fallas Salazar ◽  
Alejandra M. Rojas González

The variability of climate, increase in population, and lack of territorial plans in Costa Rica have caused intense disasters with human and economic losses. In 2016, Hurricane Otto hit the country’s northern area, leaving substantial damages, including landslides, debris flows, and flooding. The present study evaluated different scenarios to estimate flooded areas for Newtonian (clean water), and non-Newtonian flows with volumetric sediment concentrations (Cv) of 0.3, 0.45, 0.55, and 0.65 using Hydro-Estimator (HE), rain gauge station, and the 100-year return period event. HEC–HMS modeled the rainfall products, and FLO-2D modeled the hydrographs and Cv combinations. The simulation results were evaluated with continuous statistics, contingency table, Nash Sutcliffe Efficiency, measure of fit (F), and mean absolute differences (E) in the floodplains. Flow depths, velocities, and hazard intensities were obtained in the floodplain. The debris flood was validated with field data and classified with a Cv of 0.45, presenting lower MAE and RMSE. Results indicated no significant differences in flood depths between hydrological scenarios with clean-water simulations with a difference of 8.38% in the peak flow. The flood plain generated with HE rainfall and clear-water condition presented similar results compared to the rain gauge input source. Additionally, hydraulic results with HE and Cv of 0.45 presented E and F values similar to the simulation of Cv of 0.3, demonstrating that the HE bias did not influence the determination of the floodplain depth and extent. A mean bias factor can be applied to a sub-daily temporal resolution to enhance HE rain rate quantifications and floodplain determination.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1966
Author(s):  
Matthew Balazs ◽  
Anupma Prakash ◽  
Gabriel Wolken

Six DEMs over a 10-year period were used to estimate flood-related sedimentation in the Japanese Creek drainage located in Seward, Alaska. We analyze two existing LiDAR DEMs and one GNSS-derived DEM along with three additional DEMs that we generated using differential Global Navigation Satellite System (dGNSS) and Structure from Motion (SfM) techniques. Uncertainties in each DEM were accounted for, and a DEMs of Difference (DoD) technique was used to quantify the amount and pattern of sediment introduced, redistributed, or exiting the system. Through correlating the changes in sediment budget with rainfall data and flood events, the study demonstrates that the major flood events in 2006 and 2012—the 7th and 5th highest precipitation events on record—resulted in an increased sedimentation in the drainage as a whole. At a minimum the 2006 and 2012 events increased the sediment in the lower reaches by 70,100 and 53,900 cubic meters, respectively. The study shows that the DoD method and using multiple technologies to create DEMs is effective in quantifying the volumetric change and general spatial patterns of sediment redistribution between the acquisition of DEMs.


2021 ◽  
Author(s):  
Stuart Dunning ◽  
Simon Gascoin ◽  
Dan Shugar ◽  
Wolfgang Schwanghart

<p>The 7<sup>th</sup> February Chamoli hazard cascade originated from a 25 million m³ rock/ice avalanche slope failure that transformed into a destructive, far travelled debris flow / debris flood. There has a been necessarily a significant science focus on the proximal and immediate part of the hazard cascade. Here we report on the larger spatial and temporal scale: the sediment plume that progressed over the following days and weeks along the Ganga (Ganges) River. At the time of submission this was still recognisable over 900 km from the landslide site and had passed through hydro and nuclear power schemes. Beyond the initial plume, which has implications for rapid sedimentation in hydropower schemes and water / aquatic habitat quality, the subsequent (or not) mobilisation of event sediments over future years is a possible medium term chronic-threat to some hydropower projects. We show spectral ‘recipes’ and semi-automated methods for tracking the mass movement sediment plume and quantifying celerity using Sentinel 2 imagery, infilled using high-temporal repeat optical imagery from Planet Labs. data. The plume averaged ~60 km/day and, as expected has begun to slow as the river gradient decreases, as well as becoming less distinctive as some sediment is deposited, and as other sediment-rich water joins the Ganga.</p><p>The tracking of sediment plumes from these hazard cascades can be extended over inventories of similar events using both Sentinel 2 and Landsat archives. Such approaches allow us to provide insight into the possibilities of automated detection of hazard cascade sediment plumes to identify previously unknown events from remote source regions, as plumes have a far larger spatial-temporal footprint than the initial event.</p>


Author(s):  
Matthieu Sturzenegger ◽  
Kris Holm ◽  
Carie-Ann Lau ◽  
Matthias Jakob

ABSTRACT Regional-scale assessments for debris-flow and debris-flood propagation and avulsion on fans can be challenging. Geomorphological mapping based on aerial or satellite imagery requires substantial field verification effort. Surface evidence of past events may be obfuscated by development or obscured by repeat erosion or debris inundation, and trenching may be required to record the sedimentary architecture and date past events. This paper evaluates a methodology for debris-flow and debris-flood susceptibility mapping at regional scale based on a combination of digital elevation model (DEM) metrics to identify potential debris source zones and flow propagation modeling using the Flow-R code that is calibrated through comparison to mapped alluvial fans. The DEM metrics enable semi-automated identification and preliminary, process-based classification of streams prone to debris flow and debris flood. Flow-R is a susceptibility mapping tool that models potential flow inundation based on a combination of spreading and runout algorithms considering DEM topography and empirical propagation parameters. The methodology is first evaluated at locations where debris-flow and debris-flood hazards have been previously assessed based on field mapping and detailed numerical modeling. It is then applied over a 125,000 km2 area in southern British Columbia, Canada. The motivation for the application of this methodology is that it represents an objective and repeatable approach to susceptibility mapping, which can be integrated in a debris-flow and debris-flood risk prioritization framework at regional scale to support risk management decisions.


Water ◽  
2020 ◽  
Vol 12 (8) ◽  
pp. 2246
Author(s):  
Mohammad Ebrahim Banihabib ◽  
Lubos Jurik ◽  
Mahsa Sheikh Kazemi ◽  
Jaber Soltani ◽  
Mitra Tanhapour

Debris floods, as one of the most significant natural hazards, often threaten the lives and property of many people worldwide. Predicting models are essential for flood warning systems to minimize casualties of debris floods. Since HEC-HMS (Hydrologic Engineering Center’s Hydrological Modelling System) cannot simulate debris flow, this study proposes a new hybrid model that uses artificial intelligence models to overcome HEC-HMS’s insufficiency in reflecting the sediment concentration effect on the debris floods. A sediment concentration is an effective factor for evaluating debris flood peak flows. This led to the proposal of new hybrid models for predicting the debris flood peak flows on the basis of hybridization of the artificial intelligence models (Bayesian Network (BN) and Support Vector Regression–Particle Swarm Optimization (SVR-PSO)) and HEC-HMS. To estimate the sediment concentration of floods by using the proposed artificial intelligence models, we nominated an average basin elevation, an average basin slope, a basin area, the current day rainfall, the antecedent rainfall of the past 3 days, and the streamflow of the previous day the previous day as the effective variables. In the validation stage, the average of the Mean Absolute Relative Error (MARE) of the estimated values were 0.024, 0.038, and 0.024 for the typical floods that occurred in the Navrood, Kasilian, and the Amameh basins in the north of Iran, respectively. Similarly, we obtained values of 0.038, 0.073, and 0.040 for the debris flood events for the three respective locations. After predicting the debris flood peak flows by the proposed hybrid HMS-BN and HMS-SVR-PSO models, the average of the MAREs for all debris flood events was reduced to 0.013 and 0.014, respectively. The comparison of MAREs of the examined hybrid models shows that the HMS-BN model results in higher accuracy than the HMS-SVR-PSO model in the prediction of the debris flood peak flows. Generally, the absolute error of prediction by the proposed hybrid model is reduced to one-third of the HEC-HMS. The prediction of the debris flood peak flows using the proposed hybrid model can be examined in the debris flood warning systems to reduce the potential damages and casualties in similar basins.


2020 ◽  
Vol 45 (12) ◽  
pp. 2954-2964
Author(s):  
Matthias Jakob ◽  
Emily Mark ◽  
Scott McDougall ◽  
Pierre Friele ◽  
Carie‐Ann Lau ◽  
...  

2020 ◽  
Vol 56 (8) ◽  
Author(s):  
Michael Church ◽  
Matthias Jakob
Keyword(s):  

Landslides ◽  
2020 ◽  
Vol 17 (10) ◽  
pp. 2373-2383 ◽  
Author(s):  
Nejc Bezak ◽  
Jernej Jež ◽  
Jošt Sodnik ◽  
Mateja Jemec Auflič ◽  
Matjaž Mikoš
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document