Effect of intermediate principal stress on the deformation response of sand

1996 ◽  
Vol 33 (5) ◽  
pp. 822-828 ◽  
Author(s):  
A Sãyao ◽  
Y P Vaid

An experimental investigation of the relevance of the intermediate principal stress (σ2) on the deformation response of a sand is presented. The effects of σ2 are conveniently studied through the nondimensional stress parameter b = (σ2 – σ3)/(σ1 – σ3). A series of stress path tests was performed on Ottawa sand specimens in a hollow cylinder torsional shear device. The experimental program includes shear loading at different values of b, and special b tests, in which b was continuously varied at different stress directions. It is shown that the b value may have a significant influence on the stress–strain response of sand, depending on the loading conditions. Key words: hollow cylinder tests, generalized stress paths, sand, stress–strain behaviour, intermediate principal stress.

1990 ◽  
Vol 27 (5) ◽  
pp. 601-616 ◽  
Author(s):  
Y. P. Vaid ◽  
A. Sayao ◽  
Enhuang Hou ◽  
D. Negussey

A new hollow cylinder torsional shear apparatus is described. The apparatus is suitable for investigating soil behaviour under generalized stress paths, including principal stress rotations, characteristic of earthquake and offshore-wave loadings. A new, more rational assessment of stress nonuniformity across the wall of the hollow cylinder specimen is made, and the "no go" regions of the stress space are delineated that limit stress nonuniformity to acceptable levels. Operation of the apparatus and experimental procedures for tests on reconstituted specimens of sand are described. Typical results of drained tests on loose and dense sand are presented to illustrate the capabilities of the apparatus as a general stress-path loading device and to highlight the stress-path dependence of soil behaviour, in particular, the deformation response to principal stress rotations. Key words: hollow cylinder apparatus, generalized stress paths, principal stress rotation, sand, deformations.


1968 ◽  
Vol 8 (03) ◽  
pp. 304-312 ◽  
Author(s):  
M.A. Mahtab ◽  
R.E. Goodman

ABSTRACT The state of stress around a vertical wellbore in rock following nonlinear stress-strain laws is examined by means of finite element analysis. The wellbore is considered an axisymmetric body with axisymmetric loading. The initial vertical and horizontal stresses are "locked" in the rock elements around the wellbore and a new state of stress is generated by the displacements which occur around the borehole. A point-wise variation of the elastic moduli is made on the basis of the new stress state and the triaxial data. The initial stresses are now reintroduced along with the changed moduli and original boundary constraints. This procedure is repeated until convergent stresses are reached. The effect of nonlinearity on stresses is examined for a 6,000-ft wellbore in a schistose gneiss and Berea sandstone using results of laboratory triaxial compression tests. The results show that the effect is restricted to one well radius from the bottom periphery of the hole. Beyond a distance of one-quarter radius, the effect of nonlinearity on stresses is almost always less than 5 percent for the cases considered. The consideration of a static pressure inside the well does not magnify the effect of nonlinearity on borehole stresses. INTRODUCTION The terms "wellbore" and "borehole" here designate cylindrical openings in the ground with vertical axis and a circular cross-section. A knowledge of the stress redistribution that occurs on excavating a wellbore is important in understanding the behavior of the lined or unlined hole, hydraulic fracture response, and the effect of stress redistribution on drillability; also it is important in predicting initial stresses in the virgin ground, and in analyzing the response of measuring instruments placed in the borehole. Our knowledge of the state of stress around a wellbore has been restricted to homogeneous, isotropic, elastic material and derives chiefly from the analysis by Miles and Topping1 and the photoelastic work of Galle and Wilhoit2 and Word and Wilhoit.3 In this investigation the state of stress is examined for a nonlinear elastic material by means of finite element analysis. Many rocks possess stress-strain curves that depart notably from straight lines in their initial or final portions. While the literature contains abundant stress-strain data from triaxial tests (axisymmetric loading) on cylindrical rock specimens, there is little information on rock deformability under nonaxisymmetric loading conditions such as occur at each point around the bottom of a wellbore. Although there is some knowledge of the effect of intermediate principal stress on rock strength, there is virtually nothing known about its effect on rock deformability; therefore, we have assumed here that the effect of intermediate principal stress can be ignored. A schistose gneiss4 and Berea sandstone5 were selected as representative rocks for this analysis. The traditional graphs of deviator stress (s1-s3) vs axial strain were reworked to give the tangent modulus as a function of the deviator stress for varying values of the minor principal stress. The result is a nesting family of skewed, bell-shaped curves for the gneiss (Fig. 1A) and the sandstone (Fig. 2A). A similar replotting of the lateral strain data defines the variation of Poisson's ratio (?) with the deviator stress and confining pressure. These curves, shown in Fig. 1B for the gneiss and in Fig. 2B for the sandstone, are not so well ordered as the tangent modulus curves. However, all of these display an increase of ? with deviator stress application, but the rate of increase diminishes with confinement. The ET and ? curves for the two rock types are tabulated in Tables 1A and 1B for use in a digital computer so that material properties corresponding to a given state of stress can be assigned by interpolation.


1983 ◽  
Vol 20 (1) ◽  
pp. 120-130 ◽  
Author(s):  
L. V. Medeiros ◽  
Z. Eisenstein

Laboratory investigation of the stress–strain behaviour of glacial till (stiff silty clay) and dense preglacial sand have been carried out. Special attention has been devoted to investigation of the influence of different stress paths on the stress–strain response of these materials. Since these tests were performed primarily for an analytical study of the behaviour of a deep retaining structure, the stress paths chosen for testing were typical of stress conditions for this field situation. Triaxial and plane strain drained tests on till were run in passive compression (with increasing major principal stress and constant minor principal stress) and in active compression (with constant major principal stress and decreasing minor principal stress). On the sand, only triaxial tests were carried out. These experiments were in passive compression and in active extension (with decreasing major principal stress and constant minor principal stress).The results of different tests were compared at corresponding stress and strain levels. They indicated an appreciably decreased stiffness along the passive compression stress path compared with that in the active compression and active extension tests. Also, a comparison between the triaxial and plane strain tests for the till showed a marked influence of the intermediate principal stress. Although the results were intended for use in a stress path dependent, nonlinear elastic analysis they are discussed and explained in terms of a more general elastoplastic model of soil behaviour. Keywords: stress–strain relationship, stress path, laboratory testing, stiff clay, dense sand.


2000 ◽  
Vol 37 (5) ◽  
pp. 1126-1130 ◽  
Author(s):  
Y P Vaid ◽  
A Eliadorani

The deformation response of saturated soils to a total stress increment at the ambient void ratio and effective stress state is shown to be dependent on the direction of the effective strain increment. It is argued that in a given field problem, most soil elements neither deform fully drained nor undrained, but do so partially drained. The degree of partial drainage controls the direction of the effective stress increment and hence the deformation response. Experimental data are presented which demonstrate how shear stiffness changes with the direction of effective stress increment as a function of the ambient effective stress state.Key words: stress-strain, undrained, drained, partially drained, stress path, stiffness.


1980 ◽  
Vol 17 (4) ◽  
pp. 603-607 ◽  
Author(s):  
M. Krishna Murthy ◽  
T. S. Nagaraj ◽  
A. Sridharan

An experimental investigation dealing with the influence of stress path on the shear behaviour of a layered soil prepared in the laboratory is described. Specimens trimmed in vertical and horizontal directions have been sheared under three different stress paths in compression and extension tests. Either in compression or extension, the stress–strain behaviour of the specimens with both orientations was apparently the same, although the volume change behaviour was different. The effective stress parameters C′ and [Formula: see text]′ were found to be unique and independent of the stress path and two principal orientations. However, the values of [Formula: see text]′ in extension tests were 6–7° higher than those in compression tests.


2019 ◽  
Vol 26 (4) ◽  
pp. 984-999 ◽  
Author(s):  
Bang-you Jiang ◽  
Shi-tan Gu ◽  
Lian-guo Wang ◽  
Guang-chao Zhang ◽  
Wen-shuai Li

1993 ◽  
Vol 30 (6) ◽  
pp. 953-964 ◽  
Author(s):  
Dharmapriya Wijewickreme ◽  
Yoginder P. Vaid

The drained behaviour of loose sands under simultaneous increase in stress ratio and principal stress rotation is investigated. The hollow cylinder torsional device, which permits independent control of four stress parameters, namely effective mean normal stress [Formula: see text], stress ratio R, intermediate principal stress parameter b, and the inclination ασ of the major principal effective stress [Formula: see text] to the vertical, is adopted as the testing device. Drained tests carried out on saturated sand indicate that deformations under increasing R and ασ are path independent, if the final stress state is within the approximate bounds of R < 2 and ασ < 45°. With increasing stress ratio R and (or) principal stress rotation, deformations gradually become path dependent. Once loaded to a stress state within the domain R < 2 and ασ < 45°, the strain response under subsequent principal stress rotation is shown to be independent of the previous loading history. It is demonstrated that the strain response under any general increasing R − ασ path in the domain of R < 2 and ασ < 45° can be predicted using the results of a limited number of tests characterizing that domain. Strain increment direction αΔε is shown to be approximately coincident with and totally governed by the stress increment direction αΔσ, when the stress increment direction αΔσ is preferentially inclined towards the vertical deposition direction. Key words : sand behaviour, hollow cylinder torsional device, principal stress rotation, stress-path testing.


Sign in / Sign up

Export Citation Format

Share Document