Study of vehicle crashes into a rigid barrier

2020 ◽  
Vol 44 (3) ◽  
pp. 335-343 ◽  
Author(s):  
Robert Kostek ◽  
Piotr Aleksandrowicz

This study presents the results of both a computer simulation of a vehicle crash into a rigid barrier obtained with V-SIM4 software and an experimental crash test published by ADAC (Allgemeiner Deutscher Automobil-Club). The results were obtained using the same initial conditions, which provides an opportunity to compare results and evaluate the reliability of simulation results. Observed errors and adopted models are discussed. The sensitivity of the post-impact motion to the overlap and engaged gear was studied, which is a result of non-linear phenomena occurring during the crashes. Expert witnesses (accident reconstructionists) often face such problems. Consequently, the important factor of any accident reconstruction is the knowledge of the expert and the identification of pre-impact conditions, which are uncertain. This study also addresses practical issues related to traffic collision reconstruction, employment of CCTV (closed-circuit television) in crash reconstruction, and directions in which software should be improved. The following results are useful for collision experts.

Author(s):  
I. F. Grace ◽  
R. A. Ibrahim

Impact dynamic interaction of ships with solid ice or stationary rigid structures is a serious problem that affects the safe operation and navigation in arctic regions. The purpose of this study is to present two analytical models of impact interaction between ship roll dynamics and one-side rigid barrier. These models are the phenomenological modeling represented by a power law in stiffness and damping forces, and Zhuravlev non-smooth coordinate transformation. Extensive numerical simulations are carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequencies of external wave roll moment. The basins of attraction of safe operation are obtained and reveal the coexistence of different response regimes such non-impact periodic oscillations, modulation impact motion, period added impact oscillations, chaotic impact motion and unbounded rotational motion. The results are summarized in the bifurcation diagram in terms of response amplitude-excitation amplitude plane.


Author(s):  
I F Grace ◽  
R A Ibrahim

Impact dynamic interaction of ships with solid ice or stationary rigid structures is a serious problem that affects the safe operation and navigation in arctic regions. The purpose of this study is to present two analytical models of impact interaction between ship roll dynamics and one-side rigid barrier. These models are the phenomenological modelling represented by a power law in stiffness and damping forces, and Zhuravlev non-smooth coordinate transformation. Extensive numerical simulations are carried out for all initial conditions covered by the ship grazing orbit for different values of excitation amplitude and frequencies of external wave roll moment. The basins of attraction of safe operation are obtained and reveal the coexistence of different response regimes such as non-impact periodic oscillations, modulation impact motion, period-added impact oscillations, chaotic impact motion, and unbounded rotational motion. The results are summarized in the bifurcation diagram in terms of response-excitation amplitudes plane. The stability fraction index is obtained for different values of excitation frequency based on the ratio of the area of bounded roll oscillations to the total area of the grazing orbit.


Author(s):  
Alexander S. Lelekov ◽  
Anton V. Shiryaev

The work is devoted to modeling the growth of optically dense microalgae cultures in natural light. The basic model is based on the idea of the two-stage photoautotrophic growth of microalgae. It is shown that the increase in the intensity of sunlight in the first half of the day can be described by a linear equation. Analytical equations for the growth of biomass of microalgae and its macromolecular components are obtained. As the initial conditions, it is assumed that at the time of sunrise, the concentration of reserve biomass compounds is zero. The simulation results show that after sunrise, the growth of the microalgae culture is due only to an increase in the reserve part of the biomass, while the structural part practically does not change over six hours. Changes in the ratio of the reserve and structural parts of the biomass indicate a change in the biochemical composition of cells.


2020 ◽  
Vol 86 (8) ◽  
pp. 43-48
Author(s):  
V. V. Semenov

Development of the technologies simulating optical processes in an arbitrary dispersed medium is one of the important directions in the field of optical instrumentation and can provide computer simulation of the processes instead of using expensive equipment in physical experiments. The goal of the study is simulation of scattering of optical radiation by aerosol media using the finite element method to show a practical significance of the results of virtual experiments. We used the following initial conditions of the model: radius of a spherical particle of distilled water is 1 μm, wavelength of the incident optical radiation is 0.6328 μm, air is a medium surrounding the particle. An algorithm for implementation of the model by the finite element method is proposed. A subprogram has been developed which automates a virtual experiment for a group of particles to form their random arrangement in the model and possibility of changing their geometric shape and size within predetermined intervals. Model dependences of the radiation intensity on the scattering angle for single particle and groups of particles are presented. Simulation of the light transmission through a dispersed medium provides development of a given photosensor design and determination of the minimum number of photodetectors when measuring the parameters of the medium under study via analysis of the indicatrix of scattering by a group of particles.


Author(s):  
Shakhboz Dadabaev

The main negative factors affecting the starting modes of synchronous electric drives of pumping units of irrigation water supply systems were identified, computer simulation of direct and soft start of synchronous electric drive was made, the simulation results are shown in graphs and a brief conclusion was made on the study.


1998 ◽  
Vol 38 (2) ◽  
pp. 201-208
Author(s):  
M. W. Milke

A need exists for tools to improve evaluations of the economics of landfill gas recovery. A computer simulation tool is presented. It uses a spreadsheet computer program to calculate the economics for a fixed set of inputs, and a simulation program to consider variations in the inputs. The method calculates the methane generated each year, and estimates the costs and incomes associated with the recovery and sale of the gas. Base case results are presented for a city of 500,000. An uncertainty analysis for a hypothetical case is presented. The simulation results can help an analyst see the key variables affecting the economics of a project.


Sensors ◽  
2021 ◽  
Vol 21 (2) ◽  
pp. 586
Author(s):  
Che-Jui Chang ◽  
Jean-Fu Kiang

Strong flares and coronal mass ejections (CMEs), launched from δ-sunspots, are the most catastrophic energy-releasing events in the solar system. The formations of δ-sunspots and relevant polarity inversion lines (PILs) are crucial for the understanding of flare eruptions and CMEs. In this work, the kink-stable, spot-spot-type δ-sunspots induced by flux emergence are simulated, under different subphotospheric initial conditions of magnetic field strength, radius, twist, and depth. The time evolution of various plasma variables of the δ-sunspots are simulated and compared with the observation data, including magnetic bipolar structures, relevant PILs, and temperature. The simulation results show that magnetic polarities display switchbacks at a certain stage and then split into numerous fragments. The simulated fragmentation phenomenon in some δ-sunspots may provide leads for future observations in the field.


Sign in / Sign up

Export Citation Format

Share Document