Evaluation of damage area on fibre epoxy composites using digital image processing

2020 ◽  
Vol 44 (2) ◽  
pp. 171-178
Author(s):  
P. Arul Jose ◽  
T. Sasikumar ◽  
P. Arun Bose ◽  
N. Prabhu

In this paper, fibre epoxy composite specimens are prepared by hand lay-up method with stacking sequences (04/±452)s. Five specimens are prepared with the same dimensions and named as S1, S2, S3, S4, and S5. These specimens are tested for impact analysis using a drop-weight apparatus (DWA-Ceast9350) at energy levels of 25, 30, and 35 J, followed by tensile testing using a universal testing machine (Dak9103). The damaged areas of the impacted specimens are examined by digital image processing, numerically simulated ABAQUS software, and scanning electron microscopy, followed by tensile strength results. The results of the experiment reveal that when the impact energy increases, the damage area increases, the tensile strength decreases, and the cracks formed during impact are shown in scanning electron microscope imaging. The homogeneity and isotropy of the composite are identified by the Feret ratio and circular shape factor.

Biometrics ◽  
2017 ◽  
pp. 382-402
Author(s):  
Petre Anghelescu

In this paper are presented solutions to develop algorithms for digital image processing focusing particularly on edge detection. Edge detection is one of the most important phases used in computer vision and image processing applications and also in human image understanding. In this chapter, implementation of classical edge detection algorithms it is presented and also implementation of algorithms based on the theory of Cellular Automata (CA). This work is totally related to the idea of understanding the impact of the inherently local information processing of CA on their ability to perform a managed computation at the global level. If a suitable encoding of a digital image is used, in some cases, it is possible to achieve better results in comparison with the solutions obtained by means of conventional approaches. The software application which is able to process images in order to detect edges using both conventional algorithms and CA based ones is written in C# programming language and experimental results are presented for images with different sizes and backgrounds.


2018 ◽  
Vol 53 (1) ◽  
pp. 45-63 ◽  
Author(s):  
Ewald Fauster ◽  
David C Berg ◽  
Dilmurat Abliz ◽  
Harald Grössing ◽  
Dieter Meiners ◽  
...  

Textile permeability is one of the dictating factors in the fabrication of fibre-reinforced polymer composites. However, reproducibility of experimental in-plane permeability characterization is still a challenging task due to the lack of standardized test and evaluation procedures. The paper at hand addresses two major sources for discrepancies when characterizing in-plane permeability through optical observation of radial flow experiments: digital image processing and data evaluation algorithms. A digital image processing strategy is presented, which robustly handles varying lightning conditions, optical properties of the materials under test and image occlusions caused by mechanical elements of the test setup. The strategy is of universal validity and independent of the choice of reinforcing material and impregnating fluid. An experimental analysis compares two approaches for fitting elliptic geometry models to data points detected along the fluid flow front. The study reveals the impact of the fitting strategy on the resulting permeability data and the benefit of forcing the ellipse centre to that of the injection opening. The computation algorithm of Chan and Hwang, widely used for calculating in-plane permeability values from experimental data, is critically discussed. A correction of the algorithm is proposed which avoids a violation of isotropic data characteristics while adding robustness to the data reduction. An experimental analysis compares anisotropic in-plane permeability values obtained with different evaluation algorithms. The study highlights the impact of the computational algorithm on the permeability data and reveals discrepancies of up to 6%, which is considerable compared to the scatter typically reported for in-plane permeability data.


Author(s):  
Petre Anghelescu

In this paper are presented solutions to develop algorithms for digital image processing focusing particularly on edge detection. Edge detection is one of the most important phases used in computer vision and image processing applications and also in human image understanding. In this chapter, implementation of classical edge detection algorithms it is presented and also implementation of algorithms based on the theory of Cellular Automata (CA). This work is totally related to the idea of understanding the impact of the inherently local information processing of CA on their ability to perform a managed computation at the global level. If a suitable encoding of a digital image is used, in some cases, it is possible to achieve better results in comparison with the solutions obtained by means of conventional approaches. The software application which is able to process images in order to detect edges using both conventional algorithms and CA based ones is written in C# programming language and experimental results are presented for images with different sizes and backgrounds.


2014 ◽  
Vol 626 ◽  
pp. 258-263
Author(s):  
Ling Ling Hu ◽  
Li Wen Xiong ◽  
T.X. Yu

A numerical model of the aluminium foam with voronoi cells is built and uni-directionally crushed with various velocities from 1m/s to 110m/s. It is shown that the foam deforms homogeneously within the whole specimen and the stress in the foam increases gradually with the strain without an obvious plateau stage under the low-velocity compression, while the deformation is concentrated within a zone near the impact end and an obvious plateau stage can be found in the stress-strain curves of the foams under the high-velocity crushing. By analyzing the distribution of the density within the foams using the digital image processing technology, the densification strain of the foams under dynamic crushing can be determined. Then combining the foam’s stress-strain curve under the low-velocity compression, the dynamic plateau stress of the foams can be predicted. It is shown that both the densification strain and the plateau stress of the foams under the high-velocity crushing predicted by employing the digital image process technology are in good agreement with the numerical simulations. The results show that both the plateau stress and the densification strain of the foams increase with the impact velocity, which is essentially caused by the localization of the foam’s deformation under dynamic crushing.


Crystals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 847
Author(s):  
Fengbin Chen ◽  
Bin Xu ◽  
Huazhe Jiao ◽  
Zhuen Ruan ◽  
Juanhong Liu ◽  
...  

Adding basalt fiber into concrete can significantly improve its mechanical properties. In order to explore the influence of basalt fiber content on the uniaxial compressive strength and splitting tensile strength of concrete and the mechanism of fiber action, this paper conducts compressive and splitting tensile tests on three kinds of basalt fiber concrete specimens with different fiber content and obtains the relationship between the macro mechanical properties and the fiber content. At the same time, with the help of CT scanning equipment and digital image processing technology, the microstructure of basalt fiber concrete with three groups of fiber content is reconstructed, and the pore, crack, and fiber distribution are quantitatively described using the calculation and processing function of the Avizo reconstruction software. The results show that when the optimal fiber content is 3 kg/m3, the improvement rates of uniaxial compressive strength and splitting tensile strength are 31.9% and 23.7%, respectively. The network structure formed by fiber in concrete has the best compactness and the least number of pores, with an average sphericity of 0.89 and an average pore volume of 20.26 μm3. Through analysis, it was found that the initial defects of basalt fiber concrete exist in the form of pores, and the addition of basalt fiber will destroy the large pore size of concrete, change the pore size distribution, and increase the average sphericity; The distribution of the fiber in the concrete is a three-dimensional network, and the distribution of the fiber in the initial defect distribution area is parallel to the direction of pore arrangement.


Sign in / Sign up

Export Citation Format

Share Document