The reduction of I2 by H2O2 in aqueous solution

2001 ◽  
Vol 79 (3) ◽  
pp. 304-311 ◽  
Author(s):  
J M Ball ◽  
J B Hnatiw

The reduction of I2 by hydrogen peroxide, a primary water radiolysis product, has been identified as a key reaction that would influence iodine volatility in nuclear reactor accident conditions (1–3). Although there have been a number of studies of the reduction of I2, there exists a great degree of controversy regarding the intermediates involved, the effect of buffers, and the general rate law (1–9). Because the rates and the mechanism of this reaction are important in predicting the pH dependence of iodine behaviour in reactor containment building after a postulated reactor accident, we have undertaken a kinetic study of I2 reduction by H2O2 in aqueous solution over a pH range of 6–9. The experiments were performed using stopped-flow instrumentation and monitoring the decay of I–3 spectrophotometrically. The effects of buffer catalysis have been examined by comparison of kinetic data obtained in sodium barbital (5,5-diethylbarbituric acid), disodium citrate, and disodium hydrogen phosphate buffers. The effect of buffers, combined with the complex acid dependence of the rate law, explains many of the discrepancies reported in earlier literature.Key words: hydrogen peroxide, molecular iodine, kinetics, iodine volatility.

1988 ◽  
Vol 66 (9) ◽  
pp. 967-978 ◽  
Author(s):  
H. Brian Dunford ◽  
Adejare J. Adeniran

Over the pH range 7–10, at very low buffer concentration, the nonenzymatic iodination of tyrosine obeys the rate law[Formula: see text]where kapp is the measured second order rate constant based upon the total initial concentrations of molecular iodine and tyrosine and K2 (units M) is the equilibrium constant for [Formula: see text]. The value of k′ is 3.5 × 10−8 M∙s−1. There are three plausible mechanisms that fit the experimental data. One, the simplest, is a concerted process in which hypoiodous acid attacks tyrosine with its phenolic group unionized. The other two involve the formation of an iodinated quinoid reactive intermediate species in a rapid pre-equilibrium between unionized tyrosine and either hypoiodous acid or molecular iodine. The pre-equilibrium, if it occurs, favors the initial reactants. It is followed by a slow step in which the quinoid is converted to mono-iodinated tyrosine. Positive deviations from the rate law for pH dependence indicate that some specific acid catalysis (H3O+) is occurring in the pH range 5–7. In the presence of sufficient buffer, general acid–base catalysis is observed with acetic acid acting as a general acid catalyst in the vicinity of pH 5 and carbonate acting as a general base at pH ~ 9.5. The nonenzymatic iodination of tyrosine occurs more rapidly as the pH is increased, in marked contrast to the peroxidase-catalyzed iodination, which has its optimum at low pH.


2003 ◽  
Vol 81 (7) ◽  
pp. 850-860 ◽  
Author(s):  
J M Ball ◽  
J C Wren ◽  
J R Mitchell

The dissolution of organic solvents from containment coatings into the sump water is expected to be a key rate-controlling process, influencing the pH, the steady-state water radiolysis product concentration, and the formation of organic iodides in containment following a postulated reactor accident. The dissolution process is therefore an important component in modelling iodine behaviour in post-accident containment. The rate of release of ethyl benzene and m- and o-xylene from Amerlock 400 epoxy paint in contact with water has been measured. The release rate was found to be comparable to the release rate of methyl isobutyl ketone from various polyurethane, vinyl, and epoxy paints. The pseudo-first-order rate constant for dissolution of the solvents from these containment coatings is dependent only upon paint thickness and temperature, whereas the total amount of solvent released depends upon paint thickness. The solvent-release process is governed by the rate of uptake of water by the coupons, a Fickian diffusion-controlled process.Key words: dissolution, kinetics, organic solvents, paint.


2003 ◽  
Vol 81 (3) ◽  
pp. 230-243 ◽  
Author(s):  
G A Glowa ◽  
J C Wren

The volatility and decomposition of organic iodides in a reactor containment building are important parameters to consider when assessing the potential consequences of a nuclear reactor accident. However, there are few experimental data available for the volatilities (often reported as partition coefficients) or few rate constants regarding the decomposition (via hydrolysis) of organic iodides. The partition coefficients and hydrolysis rate constants of eight organic iodides, having a range of molecular structures, have been measured in the current studies. This data, and data accumulated in the literature, have been reviewed and discussed to provide guidelines for appropriate organization of organic iodides for the purpose of modelling iodine behaviour under postulated nuclear reactor accident conditions. After assessment of the partition coefficients and their temperature dependences of many classes of organic compounds, it was found that organic iodides could be divided into two categories based upon their volatility relative to molecular iodine. Similarly, hydrolysis rates and their temperature dependences are assigned to the two categories of organic iodides.Key words: organic iodide, hydrolysis, partition coefficient, iodine behaviour model, nuclear reactor safety.


Author(s):  
Gregory L. Finch ◽  
Richard G. Cuddihy

The elemental composition of individual particles is commonly measured by using energydispersive spectroscopic microanalysis (EDS) of samples excited with electron beam irradiation. Similarly, several investigators have characterized particles by using external monochromatic X-irradiation rather than electrons. However, there is little available information describing measurements of particulate characteristic X rays produced not from external sources of radiation, but rather from internal radiation contained within the particle itself. Here, we describe the low-energy (< 20 KeV) characteristic X-ray spectra produced by internal radiation self-excitation of two general types of particulate samples; individual radioactive particles produced during the Chernobyl nuclear reactor accident and radioactive fused aluminosilicate particles (FAP). In addition, we compare these spectra with those generated by conventional EDS.Approximately thirty radioactive particle samples from the Chernobyl accident were on a sample of wood that was near the reactor when the accident occurred. Individual particles still on the wood were microdissected from the bulk matrix after bulk autoradiography.


Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


Author(s):  
Jiwei Zhang ◽  
Jingjing Xu ◽  
Shuaixia Liu ◽  
Baoxiang Gu ◽  
Feng Chen ◽  
...  

Background: Coal gangue was used as a catalyst in heterogeneous Fenton process for the degradation of azo dye and phenol. The influencing factors, such as solution pH gangue concentration and hydrogen peroxide dosage were investigated, and the reaction mechanism between coal gangue and hydrogen peroxide was also discussed. Methods: Experimental results showed that coal gangue has the ability to activate hydrogen peroxide to degrade environmental pollutants in aqueous solution. Under optimal conditions, after 60 minutes of treatment, more than 90.57% of reactive red dye was removed, and the removal efficiency of Chemical Oxygen Demand (COD) up to 72.83%. Results: Both hydroxyl radical and superoxide radical anion participated in the degradation of organic pollutant but hydroxyl radical predominated. Stability tests for coal gangue were also carried out via the continuous degradation experiment and ion leakage analysis. After five times continuous degradation, dye removal rate decreased slightly and the leached Fe was still at very low level (2.24-3.02 mg L-1). The results of Scanning Electron Microscope (SEM), energy dispersive X-Ray Spectrometer (EDS) and X-Ray Powder Diffraction (XRD) indicated that coal gangue catalyst is stable after five times continuous reuse. Conclusion: The progress in this research suggested that coal gangue is a potential nature catalyst for the efficient degradation of organic pollutant in water and wastewater via the Fenton reaction.


Sign in / Sign up

Export Citation Format

Share Document