Reactions in Activated Peroxide Systems and their Influences on Bleaching Performance

Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.

2016 ◽  
Vol 4 (1) ◽  
pp. 241-249 ◽  
Author(s):  
Peili Lou ◽  
Chilin Li ◽  
Zhonghui Cui ◽  
Xiangxin Guo

In the job-sharing design of carbon-based cathode for Li–O2batteries, the IL layer is aimed to cover carbon surface defects and suppress side reactions, whereas Ru nanodots are responsible for modifying product microstructure and crystallinity. It enables a high energy efficiency characterized by a substantial charge plateau with extremely small overpotential.


1983 ◽  
Vol 29 (8) ◽  
pp. 1513-1517 ◽  
Author(s):  
M W McGowan ◽  
J D Artiss ◽  
B Zak

Abstract A procedure for the enzymatic determination of lecithin and sphingomyelin in aqueous solution is described. The phospholipids are first dissolved in chloroform:methanol (2:1 by vol), the solvent is evaporated, and the residue is redissolved in an aqueous zwitterionic detergent solution. The enzymatic reaction sequences of both assays involve hydrolysis of the phospholipids to produce choline, which is then oxidized to betaine, thus generating hydrogen peroxide. The hydrogen peroxide is subsequently utilized in the enzymatic coupling of 4-aminoantipyrine and sodium 2-hydroxy-3,5-dichlorobenzenesulfonate, an intensely red color being formed. The presence of a non-reacting phospholipid enhances the hydrolysis of the reacting phospholipid. Thus we added lecithin to the sphingomyelin standards and sphingomyelin to the lecithin standards. This precise procedure may be applicable to determination of lecithin and sphingomyelin in amniotic fluid.


2016 ◽  
Vol 1 (4) ◽  
pp. 806-813 ◽  
Author(s):  
Georgios Nikiforidis ◽  
Keisuke Tajima ◽  
Hye Ryung Byon

Author(s):  
Lei Wang ◽  
Kathleen C Frisella ◽  
Pattarachai Srimuk ◽  
Oliver Janka ◽  
Guido Kickelbick ◽  
...  

Electrochemical processes enable fast lithium extraction, for example, from brines, with high energy efficiency and stability. Lithium iron phosphate (LiFePO4) and manganese oxide (λ-MnO2) have usually been employed as the...


2000 ◽  
Vol 33 (6) ◽  
pp. 914-917 ◽  
Author(s):  
Yoshifumi Torimoto ◽  
Kouji Shimada ◽  
Terumasa Nishioka ◽  
Masayoshi Sadakata

Sign in / Sign up

Export Citation Format

Share Document