A topochemical rearrangement with multiple inversions of configuration

2001 ◽  
Vol 79 (8) ◽  
pp. 1272-1277 ◽  
Author(s):  
Saul Wolfe ◽  
Yih-Huang Hsieh ◽  
Raymond J Batchelor ◽  
Frederick WB Einstein ◽  
Ian D Gay

Crystalline 2-benzyloxypyridine-1-oxide rearranges slowly at room temperature to crystalline 1-benzyloxy-2-pyridone. No intermediates are detected when the process is followed by solid-state 13C NMR. The crystal structure of the pyridine-1-oxide strongly suggests that a topochemically controlled intramolecular process, in which the benzyl group migrates with retention of configuration, is not feasible. On the other hand, although somewhat disfavoured by initial solid-state O···C···O angles significantly less than the ideal 180°, intermolecular topochemically controlled processes can be envisaged that lead, with multiple inversions of configuration, either to net retention of configuration or to net inversion of configuration in the benzyl group. In contrast to the 50–80% inversion observed in solution, in the solid state only inversion is observed experimentally when chirally labelled α-deuteriobenzyloxypyridine-1-oxide is allowed to rearrange.Key words: X-ray crystallography, solid-state 13C NMR, benzyl-α-D-alcohol, 2-benzyloxypyridine-1-oxide, 1-benzyloxy-2-pyridone.

2006 ◽  
Vol 84 (10) ◽  
pp. 1294-1300 ◽  
Author(s):  
Keith Vaughan ◽  
Shasta Lee Moser ◽  
Reid Tingley ◽  
M Brad Peori ◽  
Valerio Bertolasi

Reaction of a series of diazonium salts with a mixture of formaldehyde and 1,2-diamino-2-methylpropane affords the 3-({5,5-dimethyl-3-[2-aryl-1-diazenyl]-1-imidazolidinyl}methyl)-4,4-dimethyl-1-[2-aryl-1-diazenyl]imidazolidines (1a–1f) in excellent yield. The products have been characterized by IR and NMR spectroscopic analysis, elemental analysis, and X-ray crystallography. The X-ray crystal structure of the p-methoxycarbonyl derivative (1c) establishes without question the connectivity of these novel molecules, which can be described as linear bicyclic oligomers with two imidazolidinyl groups linked together by a one-carbon spacer. This is indeed a rare molecular building block. The molecular structure is corroborated by 1H and 13C NMR data, which correlates with the previously published data of compounds of types 5 and 6 derived from 1,3-propanediamine. The triazene moieties in the crystal of 1c display significant π conjugation, which gives the N—N bond a significant degree of double-bond character. This in turn causes restricted rotation around the N—N bond, which leads to considerable broadening of signals in both the 1H and 13C NMR spectra. The molecular ion of the p-cyanophenyl derivative (1b) was observed using electrospray mass spectrometry (ES + Na). The mechanism of formation of molecules of type 1 is proposed to involve diazonium ion trapping of the previously unreported bisimidazolidinyl methane (13).Key words: triazene, bistriazene, imidazolidine, synthesis, X-ray crystallography, NMR spectroscopy.


2000 ◽  
Vol 78 (3) ◽  
pp. 316-321
Author(s):  
G W Buchanan ◽  
A B Driega ◽  
G PA Yap

The title complex is asymmetric in the crystal due to the spatial orientation of the NCS function. The space group has been determined to be P21 with a = 9.496(3), b = 8.736(3), c = 9.676(3) Å, β = 117.859(5)°, and Z = 2. The solid state 13C NMR spectrum is consistent with the lack of symmetry in the crystal and there is little evidence for large amplitude motion in the macrocycle as determined from the dipolar dephased spectrum.Key words: macrocyclic crown ether, lithium complex.


2007 ◽  
Vol 62 (10) ◽  
pp. 1339-1342 ◽  
Author(s):  
Surajit Jana ◽  
Tania Pape ◽  
Norbert W. Mitzel

The reaction of dimethylcadmium with alcohols R-OH in equimolar ratio leads to the formation of tetrameric methylcadmium alkoxides with molecular formula [(MeCd)4 (OR)4] [R = Me (1), Et (2) and iPr (3)]. These compounds have been characterised by 1H, 13C NMR and IR spectroscopy, by mass spectrometry, elemental analyses and by X-ray crystallography (for 2 and 3). The solid state structures show distorted cubane-type aggregates with Cd4O4 cores. The structural aspects and the spectroscopic characterisations of these compounds are discussed.


2001 ◽  
Vol 79 (2) ◽  
pp. 195-200 ◽  
Author(s):  
Gerald W Buchanan ◽  
Majid F Rastegar ◽  
Glenn PA Yap

Benzo-9-crown-3 ether trimerizes in the presence of FeCl3 and aqueous H2SO4 to produce tris(9-crown-3)triphenylene in 25.4% yield. This compound crystallizes in the monoclinic P21/c space group: a = 13.759(2) Å, b = 13.318(2) Å, c = 13.399(2) Å, β = 96.883(2)°, with Z = 4. The three 9-crown-3 ether units of the trimer possess different geometries and there is substantial deviation from coplanarity in the three aromatic rings. 13C NMR chemical shifts in the solid state are consistent with this lack of symmetry and are discussed in terms of the X-ray crystal-structure data.Key words: crown ether, trimerization, stereochemistry.


2000 ◽  
Vol 55 (11) ◽  
pp. 1095-1098
Author(s):  
Mutlaq Al-Jahdali ◽  
Paul K. Baker ◽  
Michael B. Hursthouse ◽  
Simon J. Coles

Reaction of [MI2(CO)(NCMe)(η2-EtC2Et)2] (M = Mo,W) with one equivalent of 2,2' -bipyridine (bipy) in CH2C12 at room temperature gives either the neutral complex, [MoI2(CO)(bipy)- (η2-EtC2Et)] (1) or the cationic complex, [WI(CO)(bipy)(η2-EtC2Et)2]I (2). The neutral molybdenum complex 1, has been crystallographically characterised, and has a pseudo-octahedral geometry with the iodo-ligand trans to the 3-hexyne, and with the bipy, carbon monoxide and other iodo-ligand occupying the equatorial face. 13C NMR studies show the 3-hexyne is donating four electrons to the molybdenum in 1.


2006 ◽  
Vol 71 (9) ◽  
pp. 1278-1302 ◽  
Author(s):  
Martin Valík ◽  
Pavel Matějka ◽  
Eberhardt Herdtweck ◽  
Vladimír Král ◽  
Bohumil Dolensky

A new bis-Tröger's base was prepared from a tetraamine precursor as a mixture of two diastereoisomers. One of the isomers has a chair-like geometry, and the other possesses a boat-like geometry, embodying molecular tweezers. A one-pot preparation of bis-TB isomers and their interconversion under acid conditions was also studied. Structures of both isomers were confirmed by single-crystal X-ray diffraction. Extensive spectroscopic data, including 1H and 13C NMR, IR and Raman spectra of the isomers, are given.


2003 ◽  
Vol 81 (2) ◽  
pp. 169-174 ◽  
Author(s):  
Glen G Briand ◽  
Tristram Chivers ◽  
Masood Parvez

The reaction of PhECl2 with 2 equiv of LiHN-t-Bu has been studied for the series E = As, Sb, and Bi to determine the effect of the phenyl group on subsequent amine condensation processes. For PhAsCl2, the metathesis product PhAs(NH-t-Bu)2 4 was obtained as a colourless oil. Similar reactions involving PhECl2, where E = Sb or Bi, yielded the cyclodipnict(III)azanes PhE(μ-N-t-Bu)2EPh 5 (E = Sb) and 6 (E = Bi), respectively. Treatment of 4 with 2 equiv of n-BuLi produced the dilithium salt Li2[PhAs(N-t-Bu)2] 7a. Products 4, 5, 6, and 7a were characterized by 1H, 7Li (7a), and 13C NMR spectra, while 5, 6, and 7a were also structurally characterized by X-ray crystallography. Compound 7a is dimeric in the solid state via intermolecular Li···N and η6-Li···Ph interactions. The cyclodipnict(III)azanes 5 and 6 have similar structures, with the exocyclic phenyl groups in trans positions relative to the E2N2 ring. This synthetic approach provides a new route to the four-membered rings RE(μ-N-t-Bu)2ER (E = Sb, Bi) and the first example of a bis(organyl)cyclodibism(III)azane.Key words: arsenic, antimony, bismuth, amides, imides.


Author(s):  
John Bacsa ◽  
Maurice Okello ◽  
Pankaj Singh ◽  
Vasu Nair

The conformation and tautomeric structure of (Z)-4-[5-(2,6-difluorobenzyl)-1-(2-fluorobenzyl)-2-oxo-1,2-dihydropyridin-3-yl]-4-hydroxy-2-oxo-N-(2-oxopyrrolidin-1-yl)but-3-enamide, C27H22F3N3O5, in the solid state has been resolved by single-crystal X-ray crystallography. The electron distribution in the molecule was evaluated by refinements with invarioms, aspherical scattering factors by the method of Dittrichet al.[Acta Cryst.(2005), A61, 314–320] that are based on the Hansen–Coppens multipole model [Hansen & Coppens (1978).Acta Cryst.A34, 909–921]. The β-diketo portion of the molecule exists in the enol form. The enol –OH hydrogen forms a strong asymmetric hydrogen bond with the carbonyl O atom on the β-C atom of the chain. Weak intramolecular hydrogen bonds exist between the weakly acidic α-CH hydrogen of the keto–enol group and the pyridinone carbonyl O atom, and also between the hydrazine N—H group and the carbonyl group in the β-position from the hydrazine N—H group. The electrostatic properties of the molecule were derived from the molecular charge density. The molecule is in a lengthened conformation and the rings of the two benzyl groups are nearly orthogonal. Results from a high-field1H and13C NMR correlation spectroscopy study confirm that the same tautomer exists in solution as in the solid state.


1982 ◽  
Vol 37 (12) ◽  
pp. 1534-1539 ◽  
Author(s):  
D. Babel

The crystal structure of the cubic compound [N(CH3)4]2CsFe(CN)6 was determined by X-ray methods: a = 2527.4(6) pm, space group Fd3c, Z = 32, Rg = 0.028 (260 independent single crystal reflections). The resulting distances within the practically undistorted Fe (CN)63- - octahedron are Fe-C = 193.4(6) and C-N = 115.7(7) pm. Compared to the ideal elpasolite structure of space group Fm3m, Z = 4, the octahedra are rotated by 7.4° through their 3 axis. This is discussed as caused by steric requirements of the tetramethylammonium groups (N-C = 148.4(10) and 149.1(38) pm, resp.). Three quarters of them, of which also the hydrogen positions could be located, are well oriented. The remaining quarter shows orientational disorder to approach similar contact distances as the other N(CH3)4+ ion exhibits between the methyl groups and the nitrogen ends of the anions


Sign in / Sign up

Export Citation Format

Share Document