Radioisotopic study of 11C-labelling methanol decomposition on iron oxide modified mesoporous MCM-41 silica

2009 ◽  
Vol 87 (3) ◽  
pp. 478-485 ◽  
Author(s):  
Eva Sarkadi-Pribóczki ◽  
Tanya Tsoncheva ◽  
Ljubomira Ivanova

Novel 11C-radiolabelling method was applied for the investigation of methanol conversion on iron oxide modified mesoporous MCM-41. Changes in the selectivity were observed varying the state of the loaded iron species or the degree of the surface coverage with 11C-radiolabelling methanol. Combining the Moessbauer spectroscopy, X-ray diffraction (XRD), N2-physisorption, and temperature-programmed reduction- thermogravimetric (TPR-TG) techniques with the high sensitive 11C-radioisotopic catalytic analysis, the contribution of the different reaction pathways of methanol conversion was discussed.

1999 ◽  
Vol 329 (1) ◽  
pp. 39-46 ◽  
Author(s):  
G Neri ◽  
A.M Visco ◽  
S Galvagno ◽  
A Donato ◽  
M Panzalorto

Soil Research ◽  
2001 ◽  
Vol 39 (2) ◽  
pp. 423 ◽  
Author(s):  
R. M. Torres Sánchez ◽  
M. Okumura ◽  
R. C. Mercader

The order of the relative degree of iron oxide coating of 4 samples of red soils from north-eastern Argentina was established using the point of zero charge (PZC), yielded by potentiometric titration, and the isoelectric point (IEP), obtained from the diffusion potential. When PZC is different from IEP, the relative fraction of apparent surface coverage could be assessed from the IEP. The results obtained by the application of X-ray diffraction, scanning electron microscopy, electron probe microanalysis, X-ray photoelectron spectroscopy, Mössbauer spectroscopy, and specif ic surface area, although essential to characterise the samples, did not allow us to determine the degree of iron oxide coating. Our findings show that the order of this degree is opposite to the order of the ratio of the amount of free iron oxides to that of clay in iron oxides/clay mixtures.


2014 ◽  
Vol 68 (9) ◽  
Author(s):  
Su-Hong Zhang ◽  
Zhi-Xian Gao ◽  
Shao-Jun Qing ◽  
Sheng-Yu Liu ◽  
Yan Qiao

AbstractThe effect of Zn on the catalytic performance of ZSM-5 in the methanol-to-olefin conversion was investigated. The samples were characterised by X-ray diffraction, N2 adsorption, FTIR, temperature-programmed desorption of ammonia and water, and Py-IR. The experimental results revealed Znmodified ZSM-5 to show a lower selectivity to light olefin at the higher reaction temperature of 520°C but a higher selectivity to light olefin at lower temperatures. As a comparison, the catalytic performance of Ca-modified ZSM-5 for the methanol conversion is also given. From the above results, it is concluded that Zn may play another role in the methanol conversion in addition to tuning the surface acidic property after modification.


2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Wen Yang ◽  
Yanyan Feng ◽  
Wei Chu

The catalysts Ni/Al2O3and CaO modified Ni/Al2O3were prepared by impregnation method and applied for methanation of CO2. The catalysts were characterized by N2adsorption/desorption, temperature-programmed reduction of H2(H2-TPR), X-ray diffraction (XRD), and temperature-programmed desorption of CO2and H2(CO2-TPD and H2-TPD) techniques, respectively. TPR and XRD results indicated that CaO can effectively restrain the growth of NiO nanoparticles, improve the dispersion of NiO, and weaken the interaction between NiO and Al2O3. CO2-TPD and H2-TPD results suggested that CaO can change the environment surrounding of CO2and H2adsorption and thus the reactants on the Ni atoms can be activated more easily. The modified Ni/Al2O3showed better catalytic activity than pure Ni/Al2O3. Ni/CaO-Al2O3showed high CO2conversion especially at low temperatures compared to Ni/Al2O3, and the selectivity to CH4was very close to 1. The high CO2conversion over Ni/CaO-Al2O3was mainly caused by the surface coverage by CO2-derived species on CaO-Al2O3surface.


2016 ◽  
Vol 840 ◽  
pp. 381-385
Author(s):  
Tengku Shafazila Tengku Saharuddin ◽  
Alinda Samsuri ◽  
Fairous Salleh ◽  
Rizafizah Othaman ◽  
Mohammad Kassim ◽  
...  

The reduction behaviour of 3% cerium doped (Ce-Fe2O3) and undoped iron oxide (Fe2O3) by hydrogen in nitrogen (10%,v/v) and carbon monoxide in nitrogen (10%,v/v) atmospheres have been investigate by temperature programmed reduction (TPR). The phases formed of partially and completely reduced samples were characterized by X-ray diffraction spectroscopy (XRD). TPR results indicate that the reduction of Ce doped and undoped iron oxide in both reductants proceed in three steps reduction (Fe2O3 → Fe3O4 → FeO → Fe) with Fe3O4 and FeO were the intermediate. TPR results also suggested that by adding Ce metal into iron oxide the reduction to metallic Fe by using both reductant gaseous give better reducibility compare to the undoped Fe2O3. The reduction process of Ce and undoped Fe2O3 become faster when CO was used as a reductant instead of H2. Furthermore, in CO atmosphere, Ce-Fe2O3 give complete reduction to metallic iron at 700 0C which about 200 0C temperature lower than other samples. Meanwhile, XRD analysis indicated that Ce doped iron oxide composed better crystallite phases of Fe2O3 with higher intensity and a small amount of FeCe2O4.


Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 48
Author(s):  
Pawel Mierczynski ◽  
Magdalena Mosińska ◽  
Lukasz Szkudlarek ◽  
Karolina Chalupka ◽  
Misa Tatsuzawa ◽  
...  

Biodiesel production from rapeseed oil and methanol via transesterification reaction facilitated by various monometallic catalyst supported on natural zeolite (NZ) was investigated. The physicochemical characteristics of the synthesized catalysts were studied by X-ray diffraction (XRD), Brunauer–Emmett–Teller method (BET), temperature-programmed-reduction in hydrogen (H2-TPR), temperature-programmed-desorption of ammonia (NH3-TPD), Scanning Electron Microscope equipped with EDX detector (SEM-EDS), and X-ray photoelectron spectroscopy (XPS) methods. The highest activity and methyl ester yields were obtained for the Pt/NZ catalyst. This catalyst showed the highest triglycerides conversion of 98.9% and fatty acids methyl esters yields of 94.6%. The activity results also confirmed the high activity of the carrier material (NZ) itself in the investigated reaction. Support material exhibited 90.5% of TG conversion and the Fatty Acid Methyl Esters yield (FAME) of 67.2%. Introduction of noble metals improves the TG conversion and FAME yield values. Increasing of the metal loading from 0.5 to 2 wt.% improves the reactivity properties of the investigated catalysts.


Author(s):  
Vahid Zabihi ◽  
Mohammad Hasan Eikani ◽  
Mehdi Ardjmand ◽  
Seyed Mahdi Latifi ◽  
Alireza Salehirad

Abstract One of the most significant aspects in selective catalytic reduction (SCR) of nitrogen oxides (NOx) is developing suitable catalysts by which the process occurs in a favorable way. At the present work SCR reaction by ammonia (NH3-SCR) was conducted using Co-Mn spinel and its composite with Fe-Mn spinel, as nanocatalysts. The nanocatalysts were fabricated through liquid routes and then their physicochemical properties such as phase composition, degree of agglomeration, particle size distribution, specific surface area and also surface acidic sites have been investigated by X-ray diffraction, Field Emission Scanning Electron Microscope, Energy-dispersive X-ray spectroscopy, energy dispersive spectroscopy mapping, Brunauer–Emmett–Teller, temperature-programmed reduction (H2-TPR) and temperature-programmed desorption of ammonia (NH3-TPD) analysis techniques. The catalytic activity tests in a temperature window of 150–400 °C and gas hourly space velocities of 10,000, 18,000 and 30,000 h−1 revealed that almost in all studied conditions, CoMn2O4/FeMn2O4 nanocomposite exhibited better performance in SCR reaction than CoMn2O4 spinel.


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 400
Author(s):  
Xiaohua Cao ◽  
Jichang Lu ◽  
Yutong Zhao ◽  
Rui Tian ◽  
Wenjun Zhang ◽  
...  

Praseodymium (Pr)-promoted MCM-41 catalyst was investigated for the catalytic decomposition of methyl mercaptan (CH3SH). Various characterization techniques, such as X-ray diffraction (XRD), N2 adsorption–desorption, temperature-programmed desorption of ammonia (NH3-TPD) and carbon dioxide (CO2-TPD), hydrogen temperature-programmed reduction (H2-TPR), and X-ray photoelectron spectrometer (XPS), were carried out to analyze the physicochemical properties of material. XPS characterization results showed that praseodymium was presented on the modified catalyst in the form of praseodymium oxide species, which can react with coke deposit to prolong the catalytic stability until 120 h. Meanwhile, the strong acid sites were proved to be the main active center over the 10% Pr/MCM-41 catalyst by NH3-TPD results during the catalytic elimination of methyl mercaptan. The possible reaction mechanism was proposed by analyzing the product distribution results. The final products were mainly small-molecule products, such as methane (CH4) and hydrogen sulfide (H2S). Dimethyl sulfide (CH3SCH3) was a reaction intermediate during the reaction. Therefore, this work contributes to the understanding of the reaction process of catalytic decomposition methyl mercaptan and the design of anti-carbon deposition catalysts.


2010 ◽  
Vol 2010 ◽  
pp. 1-12 ◽  
Author(s):  
R. Alexandrescu ◽  
I. Morjan ◽  
A. Tomescu ◽  
C. E. Simion ◽  
M. Scarisoreanu ◽  
...  

Iron/iron oxide-based nanocomposites were prepared by IR laser sensitized pyrolysis ofFe(CO)5and methyl methacrylate (MMA) mixtures. The morphology of nanopowder analyzed by TEM indicated that mainly core-shell structures were obtained. X-ray diffraction techniques evidence the cores as formed mainly by iron/iron oxide crystalline phases. A partially degraded (carbonized) polymeric matrix is suggested for the coverage of the metallic particles. The nanocomposite structure at the variation of the laser density and of the MMA flow was studied. The new materials prepared as thick films were tested for their potential for acting as gas sensors. The temporal variation of the electrical resistance in presence ofNO2, CO, andCO2, in dry and humid air was recorded. Preliminary results show that the samples obtained at higher laser power density exhibit rather high sensitivity towardsNO2detection andNO2selectivity relatively to CO andCO2. An optimum working temperature of200°Cwas found.


Sign in / Sign up

Export Citation Format

Share Document